Documentation

Mathlib.Data.Countable.Defs

Countable and uncountable types #

In this file we define a typeclass Countable saying that a given Sort* is countable and a typeclass Uncountable saying that a given Type* is uncountable.

See also Encodable for a version that singles out a specific encoding of elements of α by natural numbers.

This file also provides a few instances of these typeclasses. More instances can be found in other files.

Definition and basic properties #

theorem Countable.exists_injective_nat' {α : Sort u} [self : Countable α] :
∃ (f : α), Function.Injective f

A type α is countable if there exists an injective map α → ℕ.

theorem Countable.exists_injective_nat (α : Sort u) [Countable α] :
∃ (f : α), Function.Injective f
theorem Function.Injective.countable {α : Sort u} {β : Sort v} [Countable β] {f : αβ} (hf : Function.Injective f) :
theorem Function.Surjective.countable {α : Sort u} {β : Sort v} [Countable α] {f : αβ} (hf : Function.Surjective f) :
theorem exists_surjective_nat (α : Sort u) [Nonempty α] [Countable α] :
∃ (f : α), Function.Surjective f
theorem Countable.of_equiv {β : Sort v} (α : Sort u_1) [Countable α] (e : α β) :
theorem Equiv.countable_iff {α : Sort u} {β : Sort v} (e : α β) :
Equations
  • =

Operations on Sort*s #

instance instCountablePLift {α : Sort u} [Countable α] :
Equations
  • =
@[instance 100]
Equations
  • =
@[instance 500]
instance Subtype.countable {α : Sort u} [Countable α] {p : αProp} :
Countable { x : α // p x }
Equations
  • =
instance instCountableFin {n : } :
Equations
  • =
@[instance 100]
instance Finite.to_countable {α : Sort u} [Finite α] :
Equations
  • =
@[instance 100]
instance Prop.countable (p : Prop) :
Equations
  • =
@[instance 500]
instance Quotient.countable {α : Sort u} [Countable α] {r : ααProp} :
Equations
  • =
@[instance 500]
instance instCountableQuotient {α : Sort u} [Countable α] {s : Setoid α} :
Equations
  • =

Uncountable types #

theorem Uncountable.not_countable {α : Sort u_1} [self : Uncountable α] :

A type α is uncountable if it is not countable.

@[simp]
theorem not_uncountable {α : Sort u} [Countable α] :
@[simp]
theorem not_countable {α : Sort u} [Uncountable α] :
theorem Function.Injective.uncountable {α : Sort u} {β : Sort v} [Uncountable α] {f : αβ} (hf : Function.Injective f) :
theorem Function.Surjective.uncountable {α : Sort u} {β : Sort v} [Uncountable β] {f : αβ} (hf : Function.Surjective f) :
theorem not_injective_uncountable_countable {α : Sort u} {β : Sort v} [Uncountable α] [Countable β] (f : αβ) :
theorem Uncountable.of_equiv {β : Sort v} (α : Sort u_1) [Uncountable α] (e : α β) :
theorem Equiv.uncountable_iff {α : Sort u} {β : Sort v} (e : α β) :
Equations
  • =
Equations
  • =
@[instance 100]
Equations
  • =