Notation classes for lattice operations #
In this file we introduce typeclasses and definitions for lattice operations.
Main definitions #
Sup
: type class for the⊔
notationInf
: type class for the⊓
notationHasCompl
: type class for theᶜ
notationTop
: type class for the⊤
notationBot
: type class for the⊥
notation
Notations #
x ⊔ y
: lattice join operation;x ⊓ y
: lattice meet operation;xᶜ
: complement in a lattice;
Set / lattice complement
- compl : α → α
Set / lattice complement
Set / lattice complement
Equations
- «term_ᶜ» = Lean.ParserDescr.trailingNode `term_ᶜ 1024 1024 (Lean.ParserDescr.symbol "ᶜ")
Typeclass for the ⊔
(\lub
) notation
- sup : α → α → α
Least upper bound (
\lub
notation)
Typeclass for the ⊓
(\glb
) notation
- inf : α → α → α
Greatest lower bound (
\glb
notation)
Instances
- AddSubgroup.instInf
- AddSubmonoid.instInf
- AddSubsemigroup.instInf
- BotHom.instInf
- Complementeds.instInf
- Filter.instInf
- InfHom.instInf
- InfTopHom.instInf
- LowerSet.instInf
- OrderDual.instInf
- Pi.instInfForall
- Prod.instInf
- Rat.instInf
- Setoid.instInf
- Subgroup.instInf
- Submonoid.instInf
- Subsemigroup.instInf
- TopHom.instInf
- ULift.instInf
- UpperSet.instInf
Least upper bound (\lub
notation)
Equations
- «term_⊔_» = Lean.ParserDescr.trailingNode `term_⊔_ 68 68 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊔ ") (Lean.ParserDescr.cat `term 69))
Greatest lower bound (\glb
notation)
Equations
- «term_⊓_» = Lean.ParserDescr.trailingNode `term_⊓_ 69 69 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊓ ") (Lean.ParserDescr.cat `term 70))
Syntax typeclass for Heyting implication ⇨
.
- himp : α → α → α
Heyting implication
⇨
Instances
Syntax typeclass for Heyting negation ¬
.
The difference between HasCompl
and HNot
is that the former belongs to Heyting algebras,
while the latter belongs to co-Heyting algebras. They are both pseudo-complements, but compl
underestimates while HNot
overestimates. In boolean algebras, they are equal.
See hnot_eq_compl
.
- hnot : α → α
Heyting negation
¬
Instances
Heyting implication
Equations
- «term_⇨_» = Lean.ParserDescr.trailingNode `term_⇨_ 60 61 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⇨ ") (Lean.ParserDescr.cat `term 60))
Heyting negation
Equations
- «term¬_» = Lean.ParserDescr.node `term¬_ 72 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "¬") (Lean.ParserDescr.cat `term 72))
Typeclass for the ⊤
(\top
) notation
- top : α
The top (
⊤
,\top
) element
Instances
- AddSubgroup.instTop
- AddSubmonoid.instTop
- AddSubsemigroup.instTop
- Associates.instTopOfZero
- Filter.instTop
- InfHom.instTop
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instTop
- LO.FirstOrder.Completeness.SearchTree.instTop
- LowerSet.instTop
- OrderDual.instTop
- Pi.instTopForall
- Prod.instTop
- Subgroup.instTop
- Submonoid.instTop
- Subsemigroup.instTop
- SupHom.instTop
- ULift.instTop
- UpperSet.instTop
- WithBot.instTop
- WithTop.top
Typeclass for the ⊥
(\bot
) notation
- bot : α
The bot (
⊥
,\bot
) element
Instances
- AddSubgroup.instBot
- AddSubmonoid.instBot
- AddSubsemigroup.instBot
- Associates.instBot
- InfHom.instBot
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instBot
- LowerSet.instBot
- OrderDual.instBot
- Pi.instBotForall
- Prod.instBot
- Subgroup.instBot
- Submonoid.instBot
- Subsemigroup.instBot
- SupHom.instBot
- ULift.instBot
- UpperSet.instBot
- WithBot.bot
- WithTop.instBot
The top (⊤
, \top
) element
Equations
- «term⊤» = Lean.ParserDescr.node `term⊤ 1024 (Lean.ParserDescr.symbol "⊤")
The bot (⊥
, \bot
) element
Equations
- «term⊥» = Lean.ParserDescr.node `term⊥ 1024 (Lean.ParserDescr.symbol "⊥")