Documentation

Qq.MetaM

def Qq.withLocalDeclDQ {n : TypeType u_1} {u : Lean.Level} {α : Type} [Monad n] [MonadControlT Lean.MetaM n] (name : Lean.Name) (β : Q(Sort u)) (k : Q(«$β»)n α) :
n α
Equations
def Qq.withLocalDeclQ {n : TypeType u_1} {u : Lean.Level} {α : Type} [Monad n] [MonadControlT Lean.MetaM n] (name : Lean.Name) (bi : Lean.BinderInfo) (β : Q(Sort u)) (k : Q(«$β»)n α) :
n α
Equations
def Qq.instantiateMVarsQ {u : Lean.Level} {α : Q(Sort u)} (e : Q(«$α»)) :
Lean.MetaM Q(«$α»)
Equations
def Qq.elabTermEnsuringTypeQ {u : Lean.Level} (stx : Lean.Syntax) (expectedType : Q(Sort u)) (catchExPostpone : optParam Bool true) (implicitLambda : optParam Bool true) (errorMsgHeader? : optParam (Option String) none) :
Lean.Elab.TermElabM Q(«$expectedType»)
Equations
def Qq.inferTypeQ (e : Lean.Expr) :
Lean.MetaM ((u : Lean.Level) × (α : let u := u; Q(Sort u)) × Q(«$α»))
Equations
  • One or more equations did not get rendered due to their size.
def Qq.checkTypeQ {u : Lean.Level} (e : Lean.Expr) (ty : let u := u; Q(Sort u)) :
Lean.MetaM (Option Q(«$ty»))
Equations
inductive Qq.MaybeDefEq {u : Lean.Level} {α : let u := u; Q(Sort u)} (a : Q(«$α»)) (b : Q(«$α»)) :
Instances For
instance Qq.instReprMaybeDefEq :
{u : Lean.Level} → {α : let u := u; Q(Sort u)} → {a b : Q(«$α»)} → Repr (Qq.MaybeDefEq a b)
Equations
  • One or more equations did not get rendered due to their size.
def Qq.isDefEqQ {u : Lean.Level} {α : let u := u; Q(Sort u)} (a : Q(«$α»)) (b : Q(«$α»)) :
Equations
def Qq.assertDefEqQ {u : Lean.Level} {α : let u := u; Q(Sort u)} (a : Q(«$α»)) (b : Q(«$α»)) :
Lean.MetaM (PLift («$a» =Q «$b»))
Equations
  • One or more equations did not get rendered due to their size.