Documentation
Foundation
.
Logic
.
Kripke
.
RelItr
Search
Google site search
return to top
source
Imports
Init
Mathlib.Data.Rel
Imported by
Rel
.
iterate
Rel
.
iterate
.
iff_zero
Rel
.
iterate
.
iff_succ
Rel
.
iterate
.
eq
Rel
.
iterate
.
forward
Rel
.
iterate
.
true_any
source
def
Rel
.
iterate
{α :
Type
u_1}
(R :
Rel
α
α
)
:
ℕ
→
α
→
α
→
Prop
Equations
R
.iterate
0
=
fun (
x
x_1
:
α
) =>
x
=
x_1
R
.iterate
n
.succ
=
fun (
x
y
:
α
) =>
∃ (
z
:
α
),
R
x
z
∧
R
.iterate
n
z
y
Instances For
source
@[simp]
theorem
Rel
.
iterate
.
iff_zero
{α :
Type
u_1}
{R :
Rel
α
α
}
{x :
α
}
{y :
α
}
:
R
.iterate
0
x
y
↔
x
=
y
source
@[simp]
theorem
Rel
.
iterate
.
iff_succ
{α :
Type
u_1}
{R :
Rel
α
α
}
{n :
ℕ
}
{x :
α
}
{y :
α
}
:
R
.iterate
(
n
+
1
)
x
y
↔
∃ (
z
:
α
),
R
x
z
∧
R
.iterate
n
z
y
source
@[simp]
theorem
Rel
.
iterate
.
eq
{α :
Type
u_1}
{n :
ℕ
}
:
Rel.iterate
(
fun (
x
x_1
:
α
) =>
x
=
x_1
)
n
=
fun (
x
x_1
:
α
) =>
x
=
x_1
source
theorem
Rel
.
iterate
.
forward
{α :
Type
u_1}
{R :
Rel
α
α
}
{n :
ℕ
}
{x :
α
}
{y :
α
}
:
R
.iterate
(
n
+
1
)
x
y
↔
∃ (
z
:
α
),
R
.iterate
n
x
z
∧
R
z
y
source
theorem
Rel
.
iterate
.
true_any
{n :
ℕ
}
:
∀ {
α
:
Type
u_1} {
x
y
:
α
},
x
=
y
→
Rel.iterate
(
fun (
x
x
:
α
) =>
True
)
n
x
y