Basic definitions and properties of semantics-related notions #
This file defines the semantics of formulas based on Tarski's truth definitions. Also provides 𝓜 characterization of compactness.
Main Definitions #
LO.Semantics
: The realization of 𝓜 formula.LO.Compact
: The semantic compactness of Foundation.
Notation #
𝓜 ⊧ φ
: a proposition that states𝓜
satisfiesφ
.𝓜 ⊧* T
: a proposition that states that𝓜
satisfies each formulae in a setT
.
Equations
- LO.Semantics.«term_⊧_» = Lean.ParserDescr.trailingNode `LO.Semantics.«term_⊧_» 45 46 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊧ ") (Lean.ParserDescr.cat `term 46))
Instances For
Instances
Instances
class
LO.Semantics.Tarski
(M : Type u_1)
{F : Type u_2}
[𝓢 : Semantics F M]
[LogicalConnective F]
extends LO.Semantics.Top M, LO.Semantics.Bot M, LO.Semantics.And M, LO.Semantics.Or M, LO.Semantics.Imp M, LO.Semantics.Not M :
Instances
Equations
- LO.Semantics.«term_⊧*_» = Lean.ParserDescr.trailingNode `LO.Semantics.«term_⊧*_» 45 46 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊧* ") (Lean.ParserDescr.cat `term 46))
Instances For
Equations
- LO.Semantics.Valid M f = ∀ (𝓜 : M), 𝓜 ⊧ f
Instances For
Equations
- LO.Semantics.Satisfiable M T = ∃ (𝓜 : M), 𝓜 ⊧* T
Instances For
Equations
- LO.Semantics.models M T = {𝓜 : M | 𝓜 ⊧* T}
Instances For
Equations
- LO.Semantics.theory 𝓜 = {φ : F | 𝓜 ⊧ φ}
Instances For
instance
LO.Semantics.instMeaningfulOfBot
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[LogicalConnective F]
[Semantics.Bot M]
(𝓜 : M)
:
theorem
LO.Semantics.meaningful_iff
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
{𝓜 : M}
:
Meaningful 𝓜 ↔ ∃ (f : F), ¬𝓜 ⊧ f
theorem
LO.Semantics.not_meaningful_iff
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
(𝓜 : M)
:
¬Meaningful 𝓜 ↔ ∀ (f : F), 𝓜 ⊧ f
theorem
LO.Semantics.not_satisfiable_finset
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[LogicalConnective F]
[Tarski M]
[DecidableEq F]
(t : Finset F)
:
¬Satisfiable M ↑t ↔ Valid M (Finset.image (fun (x : F) => ∼x) t).disj
theorem
LO.Semantics.satisfiableSet_iff_models_nonempty
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
{T : Set F}
:
Satisfiable M T ↔ (models M T).Nonempty
theorem
LO.Semantics.valid_neg_iff
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[LogicalConnective F]
[Tarski M]
(f : F)
:
Valid M (∼f) ↔ ¬Satisfiable M {f}
theorem
LO.Semantics.Satisfiable.of_subset
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
{T U : Set F}
(h : Satisfiable M U)
(ss : T ⊆ U)
:
Satisfiable M T
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.Semantics.instTopSet
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[LogicalConnective F]
[Semantics.Top M]
:
Semantics.Top (Set M)
theorem
LO.Semantics.set_meaningful_iff_nonempty
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[LogicalConnective F]
[∀ (𝓜 : M), Meaningful 𝓜]
{s : Set M}
:
Meaningful s ↔ s.Nonempty
theorem
LO.Semantics.meaningful_iff_satisfiableSet
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
{T : Set F}
[LogicalConnective F]
[∀ (𝓜 : M), Meaningful 𝓜]
:
Satisfiable M T ↔ Meaningful (models M T)
theorem
LO.Semantics.consequence_iff_not_satisfiable
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
{T : Set F}
[LogicalConnective F]
[Tarski M]
{f : F}
:
theorem
LO.Cumulative.subset_of_le
{F : Type u_2}
{T : ℕ → Set F}
(H : Cumulative T)
{s₁ s₂ : ℕ}
(h : s₁ ≤ s₂)
:
T s₁ ⊆ T s₂
- compact {T : Set F} : Semantics.Satisfiable M T ↔ ∀ (u : Finset F), ↑u ⊆ T → Semantics.Satisfiable M ↑u
Instances
theorem
LO.Compact.conseq_compact
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[Compact M]
{T : Set F}
[LogicalConnective F]
[Semantics.Tarski M]
[DecidableEq F]
{f : F}
:
theorem
LO.Compact.compact_cumulative
{M : Type u_1}
{F : Type u_2}
[𝓢 : Semantics F M]
[Compact M]
{T : ℕ → Set F}
(hT : Cumulative T)
:
Semantics.Satisfiable M (⋃ (s : ℕ), T s) ↔ ∀ (s : ℕ), Semantics.Satisfiable M (T s)