Documentation

Init.Classical

Classical reasoning support #

noncomputable def Classical.indefiniteDescription {α : Sort u} (p : αProp) (h : ∃ (x : α), p x) :
{ x : α // p x }
Equations
noncomputable def Classical.choose {α : Sort u} {p : αProp} (h : ∃ (x : α), p x) :
α

Given that there exists an element satisfying p, returns one such element.

This is a straightforward consequence of, and equivalent to, Classical.choice.

See also choose_spec, which asserts that the returned value has property p.

Equations
theorem Classical.choose_spec {α : Sort u} {p : αProp} (h : ∃ (x : α), p x) :
p (choose h)
theorem Classical.em (p : Prop) :
p ¬p

Diaconescu's theorem: excluded middle from choice, Function extensionality and propositional extensionality.

theorem Classical.exists_true_of_nonempty {α : Sort u} :
Nonempty α∃ (x : α), True
noncomputable def Classical.inhabited_of_nonempty {α : Sort u} (h : Nonempty α) :
Equations
noncomputable def Classical.inhabited_of_exists {α : Sort u} {p : αProp} (h : ∃ (x : α), p x) :
Equations
noncomputable def Classical.propDecidable (a : Prop) :

All propositions are Decidable.

Equations
noncomputable def Classical.typeDecidableEq (α : Sort u) :
Equations
noncomputable def Classical.typeDecidable (α : Sort u) :
α ⊕' (αFalse)
Equations
noncomputable def Classical.strongIndefiniteDescription {α : Sort u} (p : αProp) (h : Nonempty α) :
{ x : α // (∃ (y : α), p y)p x }
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def Classical.epsilon {α : Sort u} [h : Nonempty α] (p : αProp) :
α

the Hilbert epsilon Function

Equations
theorem Classical.epsilon_spec_aux {α : Sort u} (h : Nonempty α) (p : αProp) :
(∃ (y : α), p y)p (epsilon p)
theorem Classical.epsilon_spec {α : Sort u} {p : αProp} (hex : ∃ (y : α), p y) :
p (epsilon p)
theorem Classical.epsilon_singleton {α : Sort u} (x : α) :
(epsilon fun (y : α) => y = x) = x
theorem Classical.axiomOfChoice {α : Sort u} {β : αSort v} {r : (x : α) → β xProp} (h : ∀ (x : α), ∃ (y : β x), r x y) :
∃ (f : (x : α) → β x), ∀ (x : α), r x (f x)

the axiom of choice

theorem Classical.skolem {α : Sort u} {b : αSort v} {p : (x : α) → b xProp} :
(∀ (x : α), ∃ (y : b x), p x y) ∃ (f : (x : α) → b x), ∀ (x : α), p x (f x)
theorem Classical.byCases {p q : Prop} (hpq : pq) (hnpq : ¬pq) :
q
theorem Classical.byContradiction {p : Prop} (h : ¬pFalse) :
p
@[simp]
theorem Classical.not_not {a : Prop} :

The Double Negation Theorem: ¬¬P is equivalent to P. The left-to-right direction, double negation elimination (DNE), is classically true but not constructively.

@[simp]
theorem Classical.dite_not {p : Prop} {α : Sort u_1} [hn : Decidable ¬p] (x : ¬pα) (y : ¬¬pα) :
dite (¬p) x y = dite p (fun (h : p) => y ) x

Negation of the condition P : Prop in a dite is the same as swapping the branches.

@[simp]
theorem Classical.ite_not {α : Sort u_1} (p : Prop) [Decidable ¬p] (x y : α) :
(if ¬p then x else y) = if p then y else x

Negation of the condition P : Prop in a ite is the same as swapping the branches.

@[simp]
@[simp]
theorem Classical.not_forall {α : Sort u_1} {p : αProp} :
(¬∀ (x : α), p x) ∃ (x : α), ¬p x
theorem Classical.not_forall_not {α : Sort u_1} {p : αProp} :
(¬∀ (x : α), ¬p x) ∃ (x : α), p x
theorem Classical.not_exists_not {α : Sort u_1} {p : αProp} :
(¬∃ (x : α), ¬p x) ∀ (x : α), p x
theorem Classical.forall_or_exists_not {α : Sort u_1} (P : αProp) :
(∀ (a : α), P a) ∃ (a : α), ¬P a
theorem Classical.exists_or_forall_not {α : Sort u_1} (P : αProp) :
(∃ (a : α), P a) ∀ (a : α), ¬P a
theorem Classical.or_iff_not_imp_left {a b : Prop} :
a b ¬ab
theorem Classical.or_iff_not_imp_right {a b : Prop} :
a b ¬ba
theorem Classical.not_imp_iff_and_not {a b : Prop} :
¬(ab) a ¬b
theorem Classical.not_iff {a b : Prop} :
¬(a b) (¬a b)
@[simp]
theorem Classical.imp_iff_left_iff {b a : Prop} :
(b ab) a b
@[simp]
theorem Classical.imp_iff_right_iff {a b : Prop} :
(ab b) a b
@[simp]
theorem Classical.and_or_imp {a b c : Prop} :
a b (ac) ab c
@[simp]
theorem Classical.not_imp {a b : Prop} :
¬(ab) a ¬b
@[simp]
theorem Classical.imp_and_neg_imp_iff (p : Prop) {q : Prop} :
(pq) (¬pq) q
@[reducible]
noncomputable def Exists.choose {α : Sort u_1} {p : αProp} (P : ∃ (a : α), p a) :
α

Extract an element from a existential statement, using Classical.choose.

Equations
theorem Exists.choose_spec {α : Sort u_1} {p : αProp} (P : ∃ (a : α), p a) :
p P.choose

Show that an element extracted from P : ∃ a, p a using P.choose satisfies p.