Documentation

Init.Data.List.OfFn

Theorems about List.ofFn #

def List.ofFn {α : Type u_1} {n : Nat} (f : Fin nα) :
List α

ofFn f with f : fin n → α returns the list whose ith element is f i

ofFn f = [f 0, f 1, ... , f (n - 1)]
Equations
@[simp]
theorem List.length_ofFn {n : Nat} {α : Type u_1} (f : Fin nα) :
(ofFn f).length = n
@[simp]
theorem List.getElem_ofFn {n : Nat} {α : Type u_1} (f : Fin nα) (i : Nat) (h : i < (ofFn f).length) :
(ofFn f)[i] = f i,
@[simp]
theorem List.getElem?_ofFn {n : Nat} {α : Type u_1} (f : Fin nα) (i : Nat) :
(ofFn f)[i]? = if h : i < n then some (f i, h) else none
@[simp]
theorem List.ofFn_zero {α : Type u_1} (f : Fin 0α) :
ofFn f = []

ofFn on an empty domain is the empty list.

@[simp]
theorem List.ofFn_succ {α : Type u_1} {n : Nat} (f : Fin (n + 1)α) :
ofFn f = f 0 :: ofFn fun (i : Fin n) => f i.succ
@[simp]
theorem List.ofFn_eq_nil_iff {n : Nat} {α : Type u_1} {f : Fin nα} :
ofFn f = [] n = 0
theorem List.head_ofFn {α : Type u_1} {n : Nat} (f : Fin nα) (h : ofFn f []) :
(ofFn f).head h = f 0,
theorem List.getLast_ofFn {α : Type u_1} {n : Nat} (f : Fin nα) (h : ofFn f []) :
(ofFn f).getLast h = f n - 1,