Documentation

Mathlib.Algebra.Group.Even

Squares and even elements #

This file defines square and even elements in a monoid.

Main declarations #

TODO #

See also #

Mathlib.Algebra.Ring.Parity for the definition of odd elements.

def Even {α : Type u_2} [Add α] (a : α) :

An element a of a type α with addition satisfies Even a if a = r + r, for some r : α.

Equations
Instances For
    def IsSquare {α : Type u_2} [Mul α] (a : α) :

    An element a of a type α with multiplication satisfies IsSquare a if a = r * r, for some r : α.

    Equations
    Instances For
      @[simp]
      theorem even_add_self {α : Type u_2} [Add α] (m : α) :
      Even (m + m)
      @[simp]
      theorem isSquare_mul_self {α : Type u_2} [Mul α] (m : α) :
      IsSquare (m * m)
      theorem even_op_iff {α : Type u_2} [Add α] {a : α} :
      abbrev even_op_iff.match_1 {α : Type u_1} [Add α] {a : α} (motive : Even (AddOpposite.op a)Prop) :
      ∀ (x : Even (AddOpposite.op a)), (∀ (c : αᵃᵒᵖ) (hc : AddOpposite.op a = c + c), motive )motive x
      Equations
      • =
      Instances For
        abbrev even_op_iff.match_2 {α : Type u_1} [Add α] {a : α} (motive : Even aProp) :
        ∀ (x : Even a), (∀ (c : α) (hc : a = c + c), motive )motive x
        Equations
        • =
        Instances For
          theorem isSquare_op_iff {α : Type u_2} [Mul α] {a : α} :
          theorem even_unop_iff {α : Type u_2} [Add α] {a : αᵃᵒᵖ} :
          @[simp]
          theorem even_ofMul_iff {α : Type u_2} [Mul α] {a : α} :
          Even (Additive.ofMul a) IsSquare a
          @[simp]
          theorem isSquare_toMul_iff {α : Type u_2} [Mul α] {a : Additive α} :
          IsSquare (Additive.toMul a) Even a
          instance Additive.instDecidablePredEven {α : Type u_2} [Mul α] [DecidablePred IsSquare] :
          Equations
          @[simp]
          theorem isSquare_ofAdd_iff {α : Type u_2} [Add α] {a : α} :
          IsSquare (Multiplicative.ofAdd a) Even a
          @[simp]
          theorem even_toAdd_iff {α : Type u_2} [Add α] {a : Multiplicative α} :
          Even (Multiplicative.toAdd a) IsSquare a
          Equations
          @[simp]
          theorem even_zero {α : Type u_2} [AddZeroClass α] :
          @[simp]
          theorem isSquare_one {α : Type u_2} [MulOneClass α] :
          theorem Even.map {F : Type u_1} {α : Type u_2} {β : Type u_3} [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [AddMonoidHomClass F α β] {m : α} (f : F) :
          Even mEven (f m)
          theorem IsSquare.map {F : Type u_1} {α : Type u_2} {β : Type u_3} [MulOneClass α] [MulOneClass β] [FunLike F α β] [MonoidHomClass F α β] {m : α} (f : F) :
          IsSquare mIsSquare (f m)
          theorem even_iff_exists_two_nsmul {α : Type u_2} [AddMonoid α] (m : α) :
          Even m ∃ (c : α), m = 2 c
          theorem isSquare_iff_exists_sq {α : Type u_2} [Monoid α] (m : α) :
          IsSquare m ∃ (c : α), m = c ^ 2
          theorem isSquare_of_exists_sq {α : Type u_2} [Monoid α] (m : α) :
          (∃ (c : α), m = c ^ 2)IsSquare m

          Alias of the reverse direction of isSquare_iff_exists_sq.

          theorem IsSquare.exists_sq {α : Type u_2} [Monoid α] (m : α) :
          IsSquare m∃ (c : α), m = c ^ 2

          Alias of the forward direction of isSquare_iff_exists_sq.

          theorem Even.exists_two_nsmul {α : Type u_2} [AddMonoid α] (m : α) :
          Even m∃ (c : α), m = 2 c

          Alias of the forwards direction of even_iff_exists_two_nsmul.

          theorem Even.nsmul {α : Type u_2} [AddMonoid α] {a : α} (n : ) :
          Even aEven (n a)
          theorem IsSquare.pow {α : Type u_2} [Monoid α] {a : α} (n : ) :
          IsSquare aIsSquare (a ^ n)
          theorem Even.nsmul' {α : Type u_2} [AddMonoid α] {n : } :
          Even n∀ (a : α), Even (n a)
          theorem Even.isSquare_pow {α : Type u_2} [Monoid α] {n : } :
          Even n∀ (a : α), IsSquare (a ^ n)
          theorem even_two_nsmul {α : Type u_2} [AddMonoid α] (a : α) :
          Even (2 a)
          theorem IsSquare_sq {α : Type u_2} [Monoid α] (a : α) :
          IsSquare (a ^ 2)
          theorem Even.add {α : Type u_2} [AddCommSemigroup α] {a : α} {b : α} :
          Even aEven bEven (a + b)
          theorem IsSquare.mul {α : Type u_2} [CommSemigroup α] {a : α} {b : α} :
          IsSquare aIsSquare bIsSquare (a * b)
          @[simp]
          theorem even_neg {α : Type u_2} [SubtractionMonoid α] {a : α} :
          Even (-a) Even a
          @[simp]
          theorem isSquare_inv {α : Type u_2} [DivisionMonoid α] {a : α} :
          theorem IsSquare.inv {α : Type u_2} [DivisionMonoid α] {a : α} :

          Alias of the reverse direction of isSquare_inv.

          theorem Even.neg {α : Type u_2} [SubtractionMonoid α] {a : α} :
          Even aEven (-a)
          theorem Even.zsmul {α : Type u_2} [SubtractionMonoid α] {a : α} (n : ) :
          Even aEven (n a)
          theorem IsSquare.zpow {α : Type u_2} [DivisionMonoid α] {a : α} (n : ) :
          IsSquare aIsSquare (a ^ n)
          theorem Even.sub {α : Type u_2} [SubtractionCommMonoid α] {a : α} {b : α} (ha : Even a) (hb : Even b) :
          Even (a - b)
          theorem IsSquare.div {α : Type u_2} [DivisionCommMonoid α] {a : α} {b : α} (ha : IsSquare a) (hb : IsSquare b) :
          IsSquare (a / b)
          @[simp]
          theorem Even.zsmul' {α : Type u_2} [AddGroup α] {n : } :
          Even n∀ (a : α), Even (n a)
          @[simp]
          theorem Even.isSquare_zpow {α : Type u_2} [Group α] {n : } :
          Even n∀ (a : α), IsSquare (a ^ n)