Documentation

Mathlib.Algebra.Order.Group.OrderIso

Inverse and multiplication as order isomorphisms in ordered groups #

def OrderIso.inv (α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] :

x ↦ x⁻¹ as an order-reversing equivalence.

Equations
def OrderIso.neg (α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] :

x ↦ -x as an order-reversing equivalence.

Equations
@[simp]
theorem OrderIso.neg_symm_apply (α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a✝ : αᵒᵈ) :
(RelIso.symm (neg α)) a✝ = -OrderDual.ofDual a✝
@[simp]
theorem OrderIso.inv_apply (α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a✝ : α) :
(inv α) a✝ = OrderDual.toDual a✝⁻¹
@[simp]
theorem OrderIso.inv_symm_apply (α : Type u) [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a✝ : αᵒᵈ) :
(RelIso.symm (inv α)) a✝ = (OrderDual.ofDual a✝)⁻¹
@[simp]
theorem OrderIso.neg_apply (α : Type u) [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a✝ : α) :
(neg α) a✝ = OrderDual.toDual (-a✝)
theorem inv_le' {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
theorem neg_le {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
-a b -b a
theorem inv_le_of_inv_le' {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
a⁻¹ bb⁻¹ a

Alias of the forward direction of inv_le'.

theorem neg_le_of_neg_le {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
-a b-b a
theorem le_inv' {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
theorem le_neg {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
a -b b -a
def OrderIso.divLeft {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a : α) :

x ↦ a / x as an order-reversing equivalence.

Equations
def OrderIso.subLeft {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a : α) :

x ↦ a - x as an order-reversing equivalence.

Equations
@[simp]
theorem OrderIso.divLeft_apply {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a a✝ : α) :
(divLeft a) a✝ = OrderDual.toDual (a / a✝)
@[simp]
theorem OrderIso.subLeft_apply {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a a✝ : α) :
(subLeft a) a✝ = OrderDual.toDual (a - a✝)
@[simp]
theorem OrderIso.subLeft_symm_apply {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] (a : α) (a✝ : αᵒᵈ) :
(RelIso.symm (subLeft a)) a✝ = -OrderDual.ofDual a✝ + a
@[simp]
theorem OrderIso.divLeft_symm_apply {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] (a : α) (a✝ : αᵒᵈ) :
(RelIso.symm (divLeft a)) a✝ = (OrderDual.ofDual a✝)⁻¹ * a
theorem le_inv_of_le_inv {α : Type u} [Group α] [LE α] [MulLeftMono α] [MulRightMono α] {a b : α} :
a b⁻¹b a⁻¹

Alias of the forward direction of le_inv'.

theorem le_neg_of_le_neg {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] [AddRightMono α] {a b : α} :
a -bb -a
def OrderIso.mulRight {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
α ≃o α

Equiv.mulRight as an OrderIso. See also OrderEmbedding.mulRight.

Equations
def OrderIso.addRight {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
α ≃o α

Equiv.addRight as an OrderIso. See also OrderEmbedding.addRight.

Equations
@[simp]
theorem OrderIso.mulRight_apply {α : Type u} [Group α] [LE α] [MulRightMono α] (a x : α) :
(mulRight a) x = x * a
@[simp]
theorem OrderIso.addRight_toEquiv {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
(addRight a).toEquiv = Equiv.addRight a
@[simp]
theorem OrderIso.mulRight_toEquiv {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
(mulRight a).toEquiv = Equiv.mulRight a
@[simp]
theorem OrderIso.addRight_apply {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a x : α) :
(addRight a) x = x + a
@[simp]
theorem OrderIso.mulRight_symm {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
@[simp]
theorem OrderIso.addRight_symm {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
(addRight a).symm = addRight (-a)
def OrderIso.divRight {α : Type u} [Group α] [LE α] [MulRightMono α] (a : α) :
α ≃o α

x ↦ x / a as an order isomorphism.

Equations
def OrderIso.subRight {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a : α) :
α ≃o α

x ↦ x - a as an order isomorphism.

Equations
@[simp]
theorem OrderIso.divRight_apply {α : Type u} [Group α] [LE α] [MulRightMono α] (a b : α) :
(divRight a) b = b / a
@[simp]
theorem OrderIso.subRight_symm_apply {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a b : α) :
(RelIso.symm (subRight a)) b = b + a
@[simp]
theorem OrderIso.subRight_apply {α : Type u} [AddGroup α] [LE α] [AddRightMono α] (a b : α) :
(subRight a) b = b - a
@[simp]
theorem OrderIso.divRight_symm_apply {α : Type u} [Group α] [LE α] [MulRightMono α] (a b : α) :
(RelIso.symm (divRight a)) b = b * a
def OrderIso.mulLeft {α : Type u} [Group α] [LE α] [MulLeftMono α] (a : α) :
α ≃o α

Equiv.mulLeft as an OrderIso. See also OrderEmbedding.mulLeft.

Equations
def OrderIso.addLeft {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a : α) :
α ≃o α

Equiv.addLeft as an OrderIso. See also OrderEmbedding.addLeft.

Equations
@[simp]
theorem OrderIso.mulLeft_apply {α : Type u} [Group α] [LE α] [MulLeftMono α] (a x : α) :
(mulLeft a) x = a * x
@[simp]
theorem OrderIso.mulLeft_toEquiv {α : Type u} [Group α] [LE α] [MulLeftMono α] (a : α) :
(mulLeft a).toEquiv = Equiv.mulLeft a
@[simp]
theorem OrderIso.addLeft_toEquiv {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a : α) :
(addLeft a).toEquiv = Equiv.addLeft a
@[simp]
theorem OrderIso.addLeft_apply {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a x : α) :
(addLeft a) x = a + x
@[simp]
theorem OrderIso.mulLeft_symm {α : Type u} [Group α] [LE α] [MulLeftMono α] (a : α) :
@[simp]
theorem OrderIso.addLeft_symm {α : Type u} [AddGroup α] [LE α] [AddLeftMono α] (a : α) :
(addLeft a).symm = addLeft (-a)