Documentation

Mathlib.Algebra.Order.GroupWithZero.Unbundled.Lemmas

Multiplication by a positive element as an order isomorphism #

def OrderIso.mulLeft₀ {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [PosMulMono G₀] [PosMulReflectLE G₀] (a : G₀) (ha : 0 < a) :
G₀ ≃o G₀

Equiv.mulLeft₀ as an order isomorphism.

Equations
@[simp]
theorem OrderIso.mulLeft₀_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [PosMulMono G₀] [PosMulReflectLE G₀] (a : G₀) (ha : 0 < a) (x : G₀) :
@[simp]
theorem OrderIso.mulLeft₀_apply {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [PosMulMono G₀] [PosMulReflectLE G₀] (a : G₀) (ha : 0 < a) (x : G₀) :
(mulLeft₀ a ha) x = a * x
theorem OrderIso.mulLeft₀_symm {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [PosMulMono G₀] [PosMulReflectLE G₀] [ZeroLEOneClass G₀] (a : G₀) (ha : 0 < a) :
(mulLeft₀ a ha).symm = mulLeft₀ a⁻¹
def OrderIso.mulRight₀ {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [MulPosMono G₀] [MulPosReflectLE G₀] (a : G₀) (ha : 0 < a) :
G₀ ≃o G₀

Equiv.mulRight₀ as an order isomorphism.

Equations
@[simp]
theorem OrderIso.mulRight₀_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [MulPosMono G₀] [MulPosReflectLE G₀] (a : G₀) (ha : 0 < a) (x : G₀) :
@[simp]
theorem OrderIso.mulRight₀_apply {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [MulPosMono G₀] [MulPosReflectLE G₀] (a : G₀) (ha : 0 < a) (x : G₀) :
(mulRight₀ a ha) x = x * a
theorem OrderIso.mulRight₀_symm {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [MulPosMono G₀] [MulPosReflectLE G₀] [ZeroLEOneClass G₀] [PosMulReflectLT G₀] (a : G₀) (ha : 0 < a) :
(mulRight₀ a ha).symm = mulRight₀ a⁻¹
def OrderIso.divRight₀ {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [MulPosStrictMono G₀] [MulPosReflectLE G₀] [PosMulReflectLT G₀] (a : G₀) (ha : 0 < a) :
G₀ ≃o G₀

Equiv.divRight₀ as an order isomorphism.

Equations
@[simp]
theorem OrderIso.divRight₀_symm_apply {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [MulPosStrictMono G₀] [MulPosReflectLE G₀] [PosMulReflectLT G₀] (a : G₀) (ha : 0 < a) (x✝ : G₀) :
(RelIso.symm (divRight₀ a ha)) x✝ = x✝ * a
@[simp]
theorem OrderIso.divRight₀_apply {G₀ : Type u_1} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [MulPosStrictMono G₀] [MulPosReflectLE G₀] [PosMulReflectLT G₀] (a : G₀) (ha : 0 < a) (x✝ : G₀) :
(divRight₀ a ha) x✝ = x✝ / a