Documentation

Mathlib.Control.Basic

Extends the theory on functors, applicatives and monads.

def zipWithM {F : Type u → Type v} [Applicative F] {α₁ α₂ φ : Type u} (f : α₁α₂F φ) :
List α₁List α₂F (List φ)

A generalization of List.zipWith which combines list elements with an Applicative.

Equations
def zipWithM' {α β γ : Type u} {F : Type u → Type v} [Applicative F] (f : αβF γ) :
List αList βF PUnit

Like zipWithM but evaluates the result as it traverses the lists using *>.

Equations
@[simp]
theorem pure_id'_seq {α : Type u} {F : Type u → Type v} [Applicative F] [LawfulApplicative F] (x : F α) :
(pure fun (x : α) => x) <*> x = x
theorem seq_map_assoc {α β γ : Type u} {F : Type u → Type v} [Applicative F] [LawfulApplicative F] (x : F (αβ)) (f : γα) (y : F γ) :
x <*> f <$> y = (fun (x : αβ) => x f) <$> x <*> y
theorem map_seq {α β γ : Type u} {F : Type u → Type v} [Applicative F] [LawfulApplicative F] (f : βγ) (x : F (αβ)) (y : F α) :
f <$> (x <*> y) = (fun (x : αβ) => f x) <$> x <*> y
theorem seq_bind_eq {α β γ : Type u} {m : Type u → Type v} [Monad m] [LawfulMonad m] (x : m α) {g : βm γ} {f : αβ} :
f <$> x >>= g = x >>= g f
theorem fish_pure {m : Type u → Type v} [Monad m] [LawfulMonad m] {α : Type u_1} {β : Type u} (f : αm β) :
f >=> pure = f
theorem fish_pipe {m : Type u → Type v} [Monad m] [LawfulMonad m] {α β : Type u} (f : αm β) :
pure >=> f = f
theorem fish_assoc {m : Type u → Type v} [Monad m] [LawfulMonad m] {α : Type u_1} {β γ φ : Type u} (f : αm β) (g : βm γ) (h : γm φ) :
(f >=> g) >=> h = f >=> g >=> h
def List.mapAccumRM {α : Type u} {β' γ' : Type v} {m' : Type v → Type w} [Monad m'] (f : αβ'm' (β' × γ')) :
β'List αm' (β' × List γ')

Takes a value β and List α and accumulates pairs according to a monadic function f. Accumulation occurs from the right (i.e., starting from the tail of the list).

Equations
  • One or more equations did not get rendered due to their size.
  • List.mapAccumRM f x✝ [] = pure (x✝, [])
def List.mapAccumLM {α : Type u} {β' γ' : Type v} {m' : Type v → Type w} [Monad m'] (f : β'αm' (β' × γ')) :
β'List αm' (β' × List γ')

Takes a value β and List α and accumulates pairs according to a monadic function f. Accumulation occurs from the left (i.e., starting from the head of the list).

Equations
  • One or more equations did not get rendered due to their size.
  • List.mapAccumLM f x✝ [] = pure (x✝, [])
theorem joinM_map_map {m : Type u → Type u} [Monad m] [LawfulMonad m] {α β : Type u} (f : αβ) (a : m (m α)) :
theorem joinM_map_joinM {m : Type u → Type u} [Monad m] [LawfulMonad m] {α : Type u} (a : m (m (m α))) :
@[simp]
theorem joinM_map_pure {m : Type u → Type u} [Monad m] [LawfulMonad m] {α : Type u} (a : m α) :
joinM (pure <$> a) = a
@[simp]
theorem joinM_pure {m : Type u → Type u} [Monad m] [LawfulMonad m] {α : Type u} (a : m α) :
joinM (pure a) = a
def succeeds {F : TypeType v} [Alternative F] {α : Type} (x : F α) :

Returns pure true if the computation succeeds and pure false otherwise.

Equations
def tryM {F : TypeType v} [Alternative F] {α : Type} (x : F α) :

Attempts to perform the computation, but fails silently if it doesn't succeed.

Equations
def try? {F : TypeType v} [Alternative F] {α : Type} (x : F α) :
F (Option α)

Attempts to perform the computation, and returns none if it doesn't succeed.

Equations
@[simp]
theorem guard_true {F : TypeType v} [Alternative F] {h : Decidable True} :
@[simp]
def Sum.bind {e : Type v} {α : Type u_1} {β : Type u_2} :
e α(αe β)e β

The monadic bind operation for Sum.

Equations
class CommApplicative (m : Type u → Type v) [Applicative m] extends LawfulApplicative m :

A CommApplicative functor m is a (lawful) applicative functor which behaves identically on α × β and β × α, so computations can occur in either order.

Instances
theorem CommApplicative.commutative_map {m : Type u → Type v} [h : Applicative m] [CommApplicative m] {α β γ : Type u} (a : m α) (b : m β) {f : αβγ} :
f <$> a <*> b = flip f <$> b <*> a