Documentation

Mathlib.Data.Multiset.Antidiagonal

The antidiagonal on a multiset. #

The antidiagonal of a multiset s consists of all pairs (t₁, t₂) such that t₁ + t₂ = s. These pairs are counted with multiplicities.

The antidiagonal of a multiset s consists of all pairs (t₁, t₂) such that t₁ + t₂ = s. These pairs are counted with multiplicities.

Equations
theorem Multiset.antidiagonal_coe {α : Type u_1} (l : List α) :
(↑l).antidiagonal = (powersetAux l).revzip
@[simp]
theorem Multiset.antidiagonal_coe' {α : Type u_1} (l : List α) :
(↑l).antidiagonal = (powersetAux' l).revzip
@[simp]
theorem Multiset.mem_antidiagonal {α : Type u_1} {s : Multiset α} {x : Multiset α × Multiset α} :
x s.antidiagonal x.1 + x.2 = s

A pair (t₁, t₂) of multisets is contained in antidiagonal s if and only if t₁ + t₂ = s.

@[simp]
theorem Multiset.antidiagonal_map_fst {α : Type u_1} (s : Multiset α) :
map Prod.fst s.antidiagonal = s.powerset
@[simp]
theorem Multiset.antidiagonal_map_snd {α : Type u_1} (s : Multiset α) :
map Prod.snd s.antidiagonal = s.powerset
@[simp]
theorem Multiset.antidiagonal_zero {α : Type u_1} :
antidiagonal 0 = {(0, 0)}
@[simp]
theorem Multiset.antidiagonal_cons {α : Type u_1} (a : α) (s : Multiset α) :
(a ::ₘ s).antidiagonal = map (Prod.map id (cons a)) s.antidiagonal + map (Prod.map (cons a) id) s.antidiagonal
theorem Multiset.antidiagonal_eq_map_powerset {α : Type u_1} [DecidableEq α] (s : Multiset α) :
s.antidiagonal = map (fun (t : Multiset α) => (s - t, t)) s.powerset
@[simp]
theorem Multiset.card_antidiagonal {α : Type u_1} (s : Multiset α) :
s.antidiagonal.card = 2 ^ s.card