Documentation

Mathlib.Init.Data.Int.Order

Note about Mathlib/Init/ #

The files in Mathlib/Init are leftovers from the port from Mathlib3. (They contain content moved from lean3 itself that Mathlib needed but was not moved to lean4.)

We intend to move all the content of these files out into the main Mathlib directory structure. Contributions assisting with this are appreciated.

#align statements without corresponding declarations (i.e. because the declaration is in Batteries or Lean) can be left here. These will be deleted soon so will not significantly delay deleting otherwise empty Init files.

The order relation on the integers #

theorem Int.le.elim {a : } {b : } (h : a b) {P : Prop} (h' : ∀ (n : ), a + n = bP) :
P
theorem Int.ofNat_le_ofNat_of_le {m : } {n : } :
m nm n

Alias of the reverse direction of Int.ofNat_le.

theorem Int.le_of_ofNat_le_ofNat {m : } {n : } :
m nm n

Alias of the forward direction of Int.ofNat_le.

theorem Int.lt.elim {a : } {b : } (h : a < b) {P : Prop} (h' : ∀ (n : ), a + n.succ = bP) :
P
theorem Int.lt_of_ofNat_lt_ofNat {n : } {m : } :
n < mn < m

Alias of the forward direction of Int.ofNat_lt.

theorem Int.ofNat_lt_ofNat_of_lt {n : } {m : } :
n < mn < m

Alias of the reverse direction of Int.ofNat_lt.

theorem Int.neg_mul_eq_neg_mul_symm (a : ) (b : ) :
-a * b = -(a * b)
theorem Int.mul_neg_eq_neg_mul_symm (a : ) (b : ) :
a * -b = -(a * b)
theorem Int.eq_zero_or_eq_zero_of_mul_eq_zero {a : } {b : } (h : a * b = 0) :
a = 0 b = 0