Documentation

Std.Sat.CNF.Relabel

def Std.Sat.CNF.Clause.relabel {α : Type u_1} {β : Type u_2} (r : αβ) (c : Clause α) :

Change the literal type in a Clause from α to β by using r.

Equations
@[simp]
theorem Std.Sat.CNF.Clause.eval_relabel {α : Type u_1} {β : Type u_2} {r : αβ} {a : βBool} {c : Clause α} :
eval a (relabel r c) = eval (a r) c
theorem Std.Sat.CNF.Clause.relabel_congr {α : Type u_1} {β : Type u_2} {c : Clause α} {r1 r2 : αβ} (hw : ∀ (v : α), Mem v cr1 v = r2 v) :
relabel r1 c = relabel r2 c
@[simp]
theorem Std.Sat.CNF.Clause.relabel_relabel' {α✝ : Type u_1} {α✝¹ : Type u_2} {r1 : α✝α✝¹} {α✝² : Type u_3} {r2 : α✝²α✝} :
relabel r1 relabel r2 = relabel (r1 r2)

Relabelling #

It is convenient to be able to construct a CNF using a more complicated literal type, but eventually we need to embed in Nat.

def Std.Sat.CNF.relabel {α : Type u_1} {β : Type u_2} (r : αβ) (f : CNF α) :
CNF β

Change the literal type in a CNF formula from α to β by using r.

Equations
@[simp]
theorem Std.Sat.CNF.relabel_nil {α : Type u_1} {β : Type u_2} {r : αβ} :
relabel r [] = []
@[simp]
theorem Std.Sat.CNF.relabel_cons {α : Type u_1} {β : Type u_2} {c : Clause α} {f : List (Clause α)} {r : αβ} :
@[simp]
theorem Std.Sat.CNF.eval_relabel {α : Type u_1} {β : Type u_2} (r : αβ) (a : βBool) (f : CNF α) :
eval a (relabel r f) = eval (a r) f
@[simp]
theorem Std.Sat.CNF.relabel_append {α✝ : Type u_1} {α✝¹ : Type u_2} {r : α✝α✝¹} {f1 f2 : CNF α✝} :
relabel r (f1 ++ f2) = relabel r f1 ++ relabel r f2
@[simp]
theorem Std.Sat.CNF.relabel_relabel {α✝ : Type u_1} {α✝¹ : Type u_2} {r1 : α✝α✝¹} {α✝² : Type u_3} {r2 : α✝²α✝} {f : CNF α✝²} :
relabel r1 (relabel r2 f) = relabel (r1 r2) f
@[simp]
theorem Std.Sat.CNF.relabel_id {α✝ : Type u_1} {x : CNF α✝} :
theorem Std.Sat.CNF.relabel_congr {α : Type u_1} {β : Type u_2} {f : CNF α} {r1 r2 : αβ} (hw : ∀ (v : α), Mem v fr1 v = r2 v) :
relabel r1 f = relabel r2 f
theorem Std.Sat.CNF.sat_relabel {α : Type u_1} {β✝ : Type u_2} {r1 : β✝Bool} {r2 : αβ✝} {f : CNF α} (h : Sat (r1 r2) f) :
Sat r1 (relabel r2 f)
theorem Std.Sat.CNF.unsat_relabel {α : Type u_1} {β : Type u_2} {f : CNF α} (r : αβ) (h : f.Unsat) :
(relabel r f).Unsat
theorem Std.Sat.CNF.nonempty_or_impossible {α : Type u_1} (f : CNF α) :
Nonempty α ∃ (n : Nat), f = List.replicate n []
theorem Std.Sat.CNF.unsat_relabel_iff {α : Type u_1} {β : Type u_2} {f : CNF α} {r : αβ} (hw : ∀ {v1 v2 : α}, Mem v1 fMem v2 fr v1 = r v2v1 = v2) :
(relabel r f).Unsat f.Unsat