Documentation

Logic.Modal.Kripke.GL.Tree

theorem LO.Modal.Kripke.modal_equivalence_at_root_on_treeUnravelling {α : Type u_1} (M : LO.Kripke.Model α) (M_trans : Transitive M.Frame.Rel) (r : M.World) :
[r], r
@[reducible]
Equations
@[reducible]
Equations
  • LO.Modal.Kripke.instSemanticsFormulaWorld = LO.Modal.Formula.Kripke.Satisfies.semantics
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.instCoeWorld = { coe := Sum.inr }
Equations
  • LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.p_morphism = { toFun := fun (x : F.World) => Sum.inr x, forth := , back := }
@[reducible, inline]
Equations
  • M = { Tree := M.Tree, Valuation := fun (x : M.Tree.World) (a : α) => match x with | Sum.inl val => M.Valuation M.Tree.root a | Sum.inr x => M.Valuation x a }
Equations
  • LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension.instCoeWorld = { coe := Sum.inr }
Equations
Equations