Documentation

Logic.Modal.Kripke.Semantics

Equations
theorem LO.Modal.Formula.Kripke.Satisfies.box_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} :
x p ∀ (y : M.Frame.World), x yy p
theorem LO.Modal.Formula.Kripke.Satisfies.dia_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} :
x p ∃ (y : M.Frame.World), x y y p
theorem LO.Modal.Formula.Kripke.Satisfies.not_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} :
x p ¬x p
Equations
  • LO.Modal.Formula.Kripke.Satisfies.instNotWorld = { realize_not := }
theorem LO.Modal.Formula.Kripke.Satisfies.imp_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
x p q x px q
Equations
  • LO.Modal.Formula.Kripke.Satisfies.instImpWorld = { realize_imp := }
theorem LO.Modal.Formula.Kripke.Satisfies.or_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
x p q x p x q
Equations
  • LO.Modal.Formula.Kripke.Satisfies.instOrWorld = { realize_or := }
theorem LO.Modal.Formula.Kripke.Satisfies.and_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
x p q x p x q
Equations
  • LO.Modal.Formula.Kripke.Satisfies.instAndWorld = { realize_and := }
Equations
  • LO.Modal.Formula.Kripke.Satisfies.instTarskiWorld = LO.Semantics.Tarski.mk
theorem LO.Modal.Formula.Kripke.Satisfies.multibox_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {n : } :
x □^[n]p ∀ {y : M.Frame.World}, x ≺^[n] yy p
theorem LO.Modal.Formula.Kripke.Satisfies.multidia_def {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {n : } :
x ◇^[n]p ∃ (y : M.Frame.World), x ≺^[n] y y p
theorem LO.Modal.Formula.Kripke.Satisfies.trans {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} {r : LO.Modal.Formula α} (hpq : x p q) (hqr : x q r) :
x p r
theorem LO.Modal.Formula.Kripke.Satisfies.mdp {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : x p q) (hp : x p) :
x q
theorem LO.Modal.Formula.Kripke.Satisfies.not_imp {α : Type u_1} {M : LO.Kripke.Model α} {x : M.World} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} :
¬x p q x p q
Equations
Equations
  • LO.Modal.Formula.Kripke.ValidOnModel.instBotModel = { realize_bot := }
theorem LO.Modal.Formula.Kripke.ValidOnModel.mdp {α : Type u_1} {M : LO.Kripke.Model α} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : M p q) (hp : M p) :
M q
Equations
Equations
Equations
  • LO.Modal.Formula.Kripke.ValidOnFrame.instBotDep = { realize_bot := }
theorem LO.Modal.Formula.Kripke.ValidOnFrame.mdp {α : Type u_1} {F : LO.Kripke.Frame.Dep α} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : F p q) (hp : F p) :
F q
Equations
theorem LO.Modal.Formula.Kripke.ValidOnFrameClass.mdp {α : Type u_1} {𝔽 : LO.Kripke.FrameClass.Dep α} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : 𝔽 p q) (hp : 𝔽 p) :
𝔽 q
@[reducible, inline]
Equations
Equations
theorem LO.Modal.Kripke.nec {α : Type u_1} {𝔽 : LO.Kripke.FrameClass} {p : LO.Modal.Formula α} (h : 𝔽#α p) :
𝔽#α p
theorem LO.Modal.Kripke.mdp {α : Type u_1} {𝔽 : LO.Kripke.FrameClass} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hpq : 𝔽#α p q) (hp : 𝔽#α p) :
𝔽#α q
theorem LO.Modal.Kripke.iff_not_validOnFrameClass {α : Type u_1} {𝔽 : LO.Kripke.FrameClass} {p : LO.Modal.Formula α} :
¬𝔽#α p F𝔽, ∃ (V : LO.Kripke.Valuation F α) (x : { Frame := F, Valuation := V }.World), ¬LO.Modal.Formula.Kripke.Satisfies { Frame := F, Valuation := V } x p
theorem LO.Modal.Kripke.iff_not_set_validOnFrameClass {α : Type u_1} {𝔽 : LO.Kripke.FrameClass} {T : Set (LO.Modal.Formula α)} :
¬𝔽#α ⊧* T pT, F𝔽, ∃ (V : LO.Kripke.Valuation F α) (x : { Frame := F, Valuation := V }.World), ¬LO.Modal.Formula.Kripke.Satisfies { Frame := F, Valuation := V } x p
theorem LO.Modal.Kripke.iff_not_validOnFrame {α : Type u_1} {F : LO.Kripke.Frame} {T : Set (LO.Modal.Formula α)} :
¬F#α ⊧* T pT, ∃ (V : LO.Kripke.Valuation F α) (x : { Frame := F, Valuation := V }.World), ¬LO.Modal.Formula.Kripke.Satisfies { Frame := F, Valuation := V } x p
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
def LO.Modal.Kripke.definability_union_frameclass_of_theory {α : Type u_1} {𝔽₁ : LO.Kripke.FrameClass} {𝔽₂ : LO.Kripke.FrameClass} {T₁ : LO.Modal.Theory α} {T₂ : LO.Modal.Theory α} (defi₁ : 𝔽(T₁).DefinedBy 𝔽₁) (defi₂ : 𝔽(T₂).DefinedBy 𝔽₂) (nonempty : Set.Nonempty (𝔽₁ 𝔽₂)) :
𝔽(T₁ T₂).DefinedBy (𝔽₁ 𝔽₂)
Equations
def LO.Modal.Kripke.characterizability_union_frameclass_of_theory {α : Type u_1} {𝔽₁ : LO.Kripke.FrameClass} {𝔽₂ : LO.Kripke.FrameClass} {T₁ : LO.Modal.Theory α} {T₂ : LO.Modal.Theory α} (char₁ : 𝔽(T₁).Characteraizable 𝔽₁) (char₂ : 𝔽(T₂).Characteraizable 𝔽₂) (nonempty : Set.Nonempty (𝔽₁ 𝔽₂)) :
𝔽(T₁ T₂).Characteraizable (𝔽₁ 𝔽₂)
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Modal.Kripke.instDefinedByFrameClassOfHilbertNormalOfFrameClassOfTheory = { define := , nonempty := }
Equations
  • LO.Modal.Kripke.instCharacteraizableFrameClassOfHilbertNormalOfFrameClassOfTheory = { characterize := , nonempty := }
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Modal.Kripke.instDefinedByFiniteFrameClassOfHilbertNormalOfFiniteFrameClassOfTheory = { define := , nonempty := }
Equations
  • LO.Modal.Kripke.instCharacteraizableFiniteFrameClassOfHilbertNormalOfFiniteFrameClassOfTheory = { characterize := , nonempty := }
theorem LO.Modal.Kripke.sound {α : Type u} {Λ : LO.Modal.Hilbert α} {p : LO.Modal.Formula α} :
Λ ⊢! p𝔽(Λ) p
Equations
Equations
  • LO.Modal.Kripke.K_definability = .mpr LO.Modal.Kripke.K_definability'
theorem LO.Modal.Kripke.restrict_finite {α : Type u_1} {𝔽 : LO.Kripke.FrameClass} {p : LO.Modal.Formula α} :
𝔽#α p𝔽#α p
theorem LO.Modal.Kripke.exists_finite_frame {α : Type u_1} {𝔽 : LO.Kripke.FrameClass} {p : LO.Modal.Formula α} :
¬𝔽#α p F𝔽, ¬F.toFrame#α p
theorem LO.Modal.weakerThan_of_subset_FrameClass {α : Type u_2} {Ax₁ : LO.Modal.Theory α} {Ax₂ : LO.Modal.Theory α} (𝔽₁ : LO.Kripke.FrameClass) (𝔽₂ : LO.Kripke.FrameClass) [sound₁ : LO.Sound (𝝂Ax₁) 𝔽₁#α] [complete₂ : LO.Complete (𝝂Ax₂) 𝔽₂#α] (h𝔽 : 𝔽₂ 𝔽₁) :
𝝂Ax₁ ≤ₛ 𝝂Ax₂
theorem LO.Modal.equiv_of_eq_FrameClass {α : Type u_2} {Ax₁ : LO.Modal.Theory α} {Ax₂ : LO.Modal.Theory α} (𝔽₁ : LO.Kripke.FrameClass) (𝔽₂ : LO.Kripke.FrameClass) [sound₁ : LO.Sound (𝝂Ax₁) 𝔽₁#α] [sound₂ : LO.Sound (𝝂Ax₂) 𝔽₂#α] [complete₁ : LO.Complete (𝝂Ax₁) 𝔽₁#α] [complete₂ : LO.Complete (𝝂Ax₂) 𝔽₂#α] (h𝔽 : 𝔽₁ = 𝔽₂) :
𝝂Ax₁ =ₛ 𝝂Ax₂