Documentation

Foundation.FirstOrder.Arithmetic.Omega1.Nuon

theorem LO.FirstOrder.Arithmetic.Nuon.ext_graph_aux {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (z S L i : V) :
z = ext L S i (S i * Lz = 0) (i * L < SbS, Exponential (i * L) b z = S / b % L 1)
theorem LO.FirstOrder.Arithmetic.Nuon.ext_graph {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (z S L i : V) :
z = ext L S i lSS, lS = S lLL, lL = L (lS i * lLz = 0) (i * lL < lSbS, Exponential (i * lL) b hL2 * L + 1, Exponential lL hL divSS, divS = S / b z = divS % hL)
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem LO.FirstOrder.Arithmetic.Nuon.cons_app_seven {α : Type u_2} {n : } (a : α) (s : Fin n.succ.succ.succ.succ.succ.succ.succα) :
    (a :> s) 7 = s 6
    @[simp]
    theorem LO.FirstOrder.Arithmetic.Nuon.cons_app_eight {α : Type u_2} {n : } (a : α) (s : Fin n.succ.succ.succ.succ.succ.succ.succ.succα) :
    (a :> s) 8 = s 7
    @[simp]
    theorem LO.FirstOrder.Arithmetic.Nuon.cons_app_nine {α : Type u_2} {n : } (a : α) (s : Fin n.succ.succ.succ.succ.succ.succ.succ.succ.succα) :
    (a :> s) 9 = s 8
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_eq_of_ge {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {L S S' i : V} (h : S S') :
    S / bexp S' (i * L) % L 1 = ext L S i
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_eq_of_gt {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {L S S' i : V} (h : i * L < S') :
    S / bexp S' (i * L) % L 1 = ext L S i
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_eq_smash_of_le {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {I L S i : V} (h : i I) :
    S / bexp (I L) (i * L) % L 1 = ext L S i
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_add₁_pow2 {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {L i S₁ S₂ p : V} (pp : Pow2 p) (h : (i + 1) * L < p) :
    ext L (S₁ + S₂ * p) i = ext L S₁ i
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_add₁_bexp {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {I L i j S₁ S₂ : V} (hi : i I) (hij : j < i) :
    ext L (S₁ + S₂ * bexp (I L) (i * L)) j = ext L S₁ j
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_add₂_bexp {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {L I i j S₁ S₂ : V} (hij : i + j I) (hS₁ : S₁ i * L) :
    ext L (S₁ + S₂ * bexp (I L) (i * L)) (i + j) = ext L S₂ j
    theorem LO.FirstOrder.Arithmetic.Nuon.append_nil {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (I L S i : V) :
    append I L S i 0 = S % bexp (I L) (i * L)
    theorem LO.FirstOrder.Arithmetic.Nuon.len_append {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (I L S : V) {i X : V} (hi : i I) (hX : 0 < X) :
    append I L S i X = X + i * L
    theorem LO.FirstOrder.Arithmetic.Nuon.append_lt_smash {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (I L S : V) {i X : V} (hi : i < I) (hX : X L) :
    append I L S i X < I L
    theorem LO.FirstOrder.Arithmetic.Nuon.append_lt_sq_smash {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (I L S : V) {i X : V} (hi : i I) (hX : X L) (Ipos : 0 < I) :
    append I L S i X < (I L) ^ 2
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_append_last {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (I L S : V) {i X : V} (hi : i I) (hX : X L) :
    ext L (append I L S i X) i = X
    theorem LO.FirstOrder.Arithmetic.Nuon.ext_append_lt {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (I L S : V) {i j X : V} (hi : i I) (hij : j < i) :
    ext L (append I L S i X) j = ext L S j
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def LO.FirstOrder.Arithmetic.Nuon.Segment {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (U L A start intv nₛ nₑ : V) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem LO.FirstOrder.Arithmetic.Nuon.SeriesSegment.series {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A k n : V} (H : SeriesSegment U I L A k n) :
              ∃ (T : V) (S : V), IsSeries U I L A (k / I) T IsSegment L A (I * (k / I)) (k % I) S ext L T 0 = 0 ext L T (k / I) = ext L S 0 ext L S (k % I) = n
              theorem LO.FirstOrder.Arithmetic.Nuon.IsSegment.le_add {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {L A start intv S : V} (H : IsSegment L A start intv S) (i : V) :
              i intvext L S i ext L S 0 + i
              theorem LO.FirstOrder.Arithmetic.Nuon.Segment.refl {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (U L A start n : V) (hL : L 1 U) (hn : n L) :
              Segment U L A start 0 n n
              theorem LO.FirstOrder.Arithmetic.Nuon.Segment.le_add {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U L A start intv nₛ nₑ : V} (H : Segment U L A start intv nₛ nₑ) :
              nₑ nₛ + intv
              theorem LO.FirstOrder.Arithmetic.Nuon.Segment.uniq {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U L A start intv nₛ nₑ₁ nₑ₂ : V} (H₁ : Segment U L A start intv nₛ nₑ₁) (H₂ : Segment U L A start intv nₛ nₑ₂) :
              nₑ₁ = nₑ₂
              theorem LO.FirstOrder.Arithmetic.Nuon.IsSeries.le_add {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A iter T : V} (H : IsSeries U I L A iter T) (l : V) :
              l iterext L T l ext L T 0 + I * l
              theorem LO.FirstOrder.Arithmetic.Nuon.Series.le_add {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A iter n : V} (H : Series U I L A iter n) :
              n I * iter
              theorem LO.FirstOrder.Arithmetic.Nuon.Series.uniq {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A iter n₁ n₂ : V} (H₁ : Series U I L A iter n₁) (H₂ : Series U I L A iter n₂) :
              n₁ = n₂
              theorem LO.FirstOrder.Arithmetic.Nuon.SeriesSegment.le {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A k n : V} (H : SeriesSegment U I L A k n) :
              n k
              theorem LO.FirstOrder.Arithmetic.Nuon.SeriesSegment.uniq {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A k n₁ n₂ : V} (H₁ : SeriesSegment U I L A k n₁) (H₂ : SeriesSegment U I L A k n₂) :
              n₁ = n₂
              theorem LO.FirstOrder.Arithmetic.Nuon.Segment.succ {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A : V} (hU : (I L) ^ 2 U) {start intv nₛ nₑ : V} (H : Segment U L A start intv nₛ nₑ) (hintv : intv < I) (hnₛ : nₛ + I L) :
              Segment U L A start (intv + 1) nₛ (nₑ + fbit A (start + intv))
              theorem LO.FirstOrder.Arithmetic.Nuon.Series.succ {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A : V} (hU : (I L) ^ 2 U) (hIL : I ^ 2 L) {iter n n' : V} (HT : Series U I L A iter n) (HS : Segment U L A (I * iter) I n n') (hiter : iter < I) :
              Series U I L A (iter + 1) n'
              theorem LO.FirstOrder.Arithmetic.Nuon.div_mod_succ {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (a b : V) :
              (a + 1) / b = a / b + 1 (a + 1) % b = 0 a % b + 1 = b (a + 1) / b = a / b (a + 1) % b = a % b + 1
              theorem LO.FirstOrder.Arithmetic.Nuon.SeriesSegment.succ {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {U I L A : V} (hU : (I L) ^ 2 U) (hIL : I ^ 2 L) {k n : V} (hk : k < I ^ 2) (H : SeriesSegment U I L A k n) :
              SeriesSegment U I L A (k + 1) (n + fbit A k)
              noncomputable def LO.FirstOrder.Arithmetic.Nuon.polyI {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] (A : V) :
              V

              Define $I$, $L$, $U$ to satisfy the following:

              1. $I$, $L$, $U$ are polynomial of $A$.
              2. $(I \⨳ L)^2 \le U$
              3. $\| \| I \|^2 \| \le \|L\|$
              4. $\| A \| < \|I\|^2$
              Equations
              Instances For
                theorem LO.FirstOrder.Arithmetic.Nuon.bexp_four_mul {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {a a' x : V} (hx : 4 * x < a) (hx' : x < a') :
                bexp a (4 * x) = bexp a' x ^ 4
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      instance LO.FirstOrder.Arithmetic.Nuon.segmentDef_defined {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] :
                      HierarchySymbol.Defined (fun (v : Fin 7V) => Segment (v 0) (v 1) (v 2) (v 3) (v 4) (v 5) (v 6)) segmentDef
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem LO.FirstOrder.Arithmetic.Nuon.bex_eq_le_iff {V : Type u_1} [ORingStructure V] {z : V} {p : VProp} {b : V} :
                        (∃ az, a = b p a) b z p b
                        theorem LO.FirstOrder.Arithmetic.Nuon.bex_eq_lt_iff {V : Type u_1} [ORingStructure V] {z : V} {p : VProp} {b : V} :
                        (∃ a < z, a = b p a) b < z p b
                        instance LO.FirstOrder.Arithmetic.Nuon.isSerieDef_defined {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] :
                        HierarchySymbol.Defined (fun (v : Fin 6V) => IsSeries (v 0) (v 1) (v 2) (v 3) (v 4) (v 5)) isSeriesDef
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          instance LO.FirstOrder.Arithmetic.Nuon.seriesDef_defined {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] :
                          HierarchySymbol.Defined (fun (v : Fin 6V) => Series (v 0) (v 1) (v 2) (v 3) (v 4) (v 5)) seriesDef
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem LO.FirstOrder.Arithmetic.Nuon.NuonAux.uniq {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {A k n₁ n₂ : V} (H₁ : NuonAux A k n₁) (H₂ : NuonAux A k n₂) :
                              n₁ = n₂
                              theorem LO.FirstOrder.Arithmetic.Nuon.NuonAux.succ {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {n A k : V} (H : NuonAux A k n) (hk : k A) :
                              NuonAux A (k + 1) (n + fbit A k)
                              theorem LO.FirstOrder.Arithmetic.Nuon.NuonAux.exists {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {A k : V} (hk : k A) :
                              ∃ (n : V), NuonAux A k n
                              theorem LO.FirstOrder.Arithmetic.Nuon.NuonAux.succ_elim {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {n A k : V} (hk : k A) (H : NuonAux A (k + 1) n) :
                              ∃ (n' : V), n = n' + fbit A k NuonAux A k n'
                              theorem LO.FirstOrder.Arithmetic.Nuon.NuonAux.two_mul {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {A k n : V} (hk : k A) :
                              NuonAux A k nNuonAux (2 * A) (k + 1) n
                              theorem LO.FirstOrder.Arithmetic.Nuon.NuonAux.two_mul_add_one {V : Type u_1} [ORingStructure V] [V ⊧ₘ* 𝗜𝚺₀ + 𝝮₁] {A k n : V} (hk : k A) :
                              NuonAux A k nNuonAux (2 * A + 1) (k + 1) (n + 1)
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For