Documentation

Foundation.Logic.HilbertStyle.Context

structure LO.Entailment.FiniteContext (F : Type u_1) {S : Type u_2} (𝓢 : S) :
Type u_1
Instances For
    @[reducible, inline]
    abbrev LO.Entailment.FiniteContext.conj {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] (Γ : FiniteContext F 𝓢) :
    F
    Equations
    Instances For
      @[reducible, inline]
      abbrev LO.Entailment.FiniteContext.disj {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] (Γ : FiniteContext F 𝓢) :
      F
      Equations
      Instances For
        Equations
        instance LO.Entailment.FiniteContext.instMembership {F : Type u_1} {S : Type u_2} {𝓢 : S} :
        Equations
        instance LO.Entailment.FiniteContext.instHasSubset {F : Type u_1} {S : Type u_2} {𝓢 : S} :
        Equations
        instance LO.Entailment.FiniteContext.instCons {F : Type u_1} {S : Type u_2} {𝓢 : S} :
        Cons F (FiniteContext F 𝓢)
        Equations
        theorem LO.Entailment.FiniteContext.mem_def {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : FiniteContext F 𝓢} :
        φ Γ φ Γ.ctx
        @[simp]
        theorem LO.Entailment.FiniteContext.coe_subset_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {Γ Δ : List F} :
        { ctx := Γ } { ctx := Δ } Γ Δ
        @[simp]
        theorem LO.Entailment.FiniteContext.mem_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : List F} :
        φ { ctx := Γ } φ Γ
        @[simp]
        theorem LO.Entailment.FiniteContext.not_mem_empty {F : Type u_1} {S : Type u_2} {𝓢 : S} (φ : F) :
        φ
        instance LO.Entailment.FiniteContext.inst {F : Type u_1} {S : Type u_2} [Entailment F S] [LogicalConnective F] (𝓢 : S) :
        Equations
        @[reducible, inline]
        abbrev LO.Entailment.FiniteContext.Prf {F : Type u_1} {S : Type u_2} [Entailment F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (φ : F) :
        Type u_3
        Equations
        Instances For
          @[reducible, inline]
          abbrev LO.Entailment.FiniteContext.Provable {F : Type u_1} {S : Type u_2} [Entailment F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (φ : F) :
          Equations
          Instances For
            @[reducible, inline]
            abbrev LO.Entailment.FiniteContext.Unprovable {F : Type u_1} {S : Type u_2} [Entailment F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (φ : F) :
            Equations
            Instances For
              @[reducible, inline]
              abbrev LO.Entailment.FiniteContext.PrfSet {F : Type u_1} {S : Type u_2} [Entailment F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (s : Set F) :
              Type (max u_3 u_1)
              Equations
              Instances For
                @[reducible, inline]
                abbrev LO.Entailment.FiniteContext.ProvableSet {F : Type u_1} {S : Type u_2} [Entailment F S] [LogicalConnective F] (𝓢 : S) (Γ : List F) (s : Set F) :
                Equations
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            theorem LO.Entailment.FiniteContext.entailment_def {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] (Γ : FiniteContext F 𝓢) (φ : F) :
                            (Γ φ) = (𝓢 Γ.conj φ)
                            def LO.Entailment.FiniteContext.ofDef {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} {φ : F} (b : 𝓢 Γ φ) :
                            Γ ⊢[𝓢] φ
                            Equations
                            Instances For
                              def LO.Entailment.FiniteContext.toDef {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} {φ : F} (b : Γ ⊢[𝓢] φ) :
                              𝓢 Γ φ
                              Equations
                              Instances For
                                theorem LO.Entailment.FiniteContext.toₛ! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} {φ : F} (b : Γ ⊢[𝓢]! φ) :
                                𝓢 ⊢! Γ φ
                                theorem LO.Entailment.FiniteContext.provable_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} {φ : F} :
                                Γ ⊢[𝓢]! φ 𝓢 ⊢! Γ φ
                                def LO.Entailment.FiniteContext.cast {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ' : List F} {φ' : F} {Γ : List F} {φ : F} (d : Γ ⊢[𝓢] φ) ( : Γ = Γ') ( : φ = φ') :
                                Γ' ⊢[𝓢] φ'
                                Equations
                                Instances For
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  instance LO.Entailment.FiniteContext.instCompact {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] :
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  def LO.Entailment.FiniteContext.nthAxm {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {Γ : List F} (n : ) (h : n < Γ.length := by simp) :
                                  Γ ⊢[𝓢] Γ[n]
                                  Equations
                                  Instances For
                                    theorem LO.Entailment.FiniteContext.nth_axm! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {Γ : List F} (n : ) (h : n < Γ.length := by simp) :
                                    Γ ⊢[𝓢]! Γ[n]
                                    def LO.Entailment.FiniteContext.byAxm {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] [DecidableEq F] {φ : F} (h : φ Γ := by simp) :
                                    Γ ⊢[𝓢] φ
                                    Equations
                                    Instances For
                                      theorem LO.Entailment.FiniteContext.by_axm! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] [DecidableEq F] {φ : F} (h : φ Γ := by simp) :
                                      Γ ⊢[𝓢]! φ
                                      def LO.Entailment.FiniteContext.weakening {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ Δ : List F} [Entailment.Minimal 𝓢] [DecidableEq F] (h : Γ Δ) {φ : F} :
                                      Γ ⊢[𝓢] φΔ ⊢[𝓢] φ
                                      Equations
                                      Instances For
                                        theorem LO.Entailment.FiniteContext.weakening! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ Δ : List F} [Entailment.Minimal 𝓢] [DecidableEq F] (h : Γ Δ) {φ : F} :
                                        Γ ⊢[𝓢]! φΔ ⊢[𝓢]! φ
                                        def LO.Entailment.FiniteContext.of {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ : F} (b : 𝓢 φ) :
                                        Γ ⊢[𝓢] φ
                                        Equations
                                        Instances For
                                          def LO.Entailment.FiniteContext.emptyPrf {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ : F} :
                                          [] ⊢[𝓢] φ𝓢 φ
                                          Equations
                                          Instances For
                                            def LO.Entailment.FiniteContext.provable_iff_provable {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ : F} :
                                            𝓢 ⊢! φ [] ⊢[𝓢]! φ
                                            Equations
                                            • =
                                            Instances For
                                              theorem LO.Entailment.FiniteContext.of'! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ : F} [DecidableEq F] (h : 𝓢 ⊢! φ) :
                                              Γ ⊢[𝓢]! φ
                                              @[simp]
                                              theorem LO.Entailment.FiniteContext.id! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ : F} :
                                              [φ] ⊢[𝓢]! φ
                                              def LO.Entailment.FiniteContext.byAxm₀ {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ : F} :
                                              (φ :: Γ) ⊢[𝓢] φ
                                              Equations
                                              Instances For
                                                theorem LO.Entailment.FiniteContext.by_axm₀! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ : F} :
                                                (φ :: Γ) ⊢[𝓢]! φ
                                                def LO.Entailment.FiniteContext.byAxm₁ {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ ψ : F} :
                                                (φ :: ψ :: Γ) ⊢[𝓢] ψ
                                                Equations
                                                Instances For
                                                  theorem LO.Entailment.FiniteContext.by_axm₁! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ ψ : F} :
                                                  (φ :: ψ :: Γ) ⊢[𝓢]! ψ
                                                  def LO.Entailment.FiniteContext.byAxm₂ {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ ψ χ : F} :
                                                  (φ :: ψ :: χ :: Γ) ⊢[𝓢] χ
                                                  Equations
                                                  Instances For
                                                    theorem LO.Entailment.FiniteContext.by_axm₂! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ ψ χ : F} :
                                                    (φ :: ψ :: χ :: Γ) ⊢[𝓢]! χ
                                                    instance LO.Entailment.FiniteContext.instModusPonens {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] (Γ : FiniteContext F 𝓢) :
                                                    Equations
                                                    def LO.Entailment.FiniteContext.mdp' {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ Δ : List F} [Entailment.Minimal 𝓢] {φ ψ : F} [DecidableEq F] ( : Γ ⊢[𝓢] φ ψ) ( : Δ ⊢[𝓢] φ) :
                                                    (Γ ++ Δ) ⊢[𝓢] ψ
                                                    Equations
                                                    Instances For
                                                      def LO.Entailment.FiniteContext.deduct {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
                                                      (φ :: Γ) ⊢[𝓢] ψΓ ⊢[𝓢] φ ψ
                                                      Equations
                                                      Instances For
                                                        theorem LO.Entailment.FiniteContext.deduct! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ ψ : F} (h : (φ :: Γ) ⊢[𝓢]! ψ) :
                                                        Γ ⊢[𝓢]! φ ψ
                                                        def LO.Entailment.FiniteContext.deductInv {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
                                                        Γ ⊢[𝓢] φ ψ → (φ :: Γ) ⊢[𝓢] ψ
                                                        Equations
                                                        Instances For
                                                          theorem LO.Entailment.FiniteContext.deductInv! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] {Γ : List F} [Entailment.Minimal 𝓢] {φ ψ : F} (h : Γ ⊢[𝓢]! φ ψ) :
                                                          (φ :: Γ) ⊢[𝓢]! ψ
                                                          theorem LO.Entailment.FiniteContext.deduct_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ ψ : F} {Γ : List F} :
                                                          Γ ⊢[𝓢]! φ ψ (φ :: Γ) ⊢[𝓢]! ψ
                                                          theorem LO.Entailment.FiniteContext.deduct'! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ ψ : F} (h : [φ] ⊢[𝓢]! ψ) :
                                                          𝓢 ⊢! φ ψ
                                                          theorem LO.Entailment.FiniteContext.deductInv'! {F : Type u_1} {S : Type u_2} {𝓢 : S} [Entailment F S] [LogicalConnective F] [Entailment.Minimal 𝓢] {φ ψ : F} (h : 𝓢 ⊢! φ ψ) :
                                                          [φ] ⊢[𝓢]! ψ
                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          structure LO.Entailment.Context (F : Type u_1) {S : Type u_2} (𝓢 : S) :
                                                          Type u_1
                                                          Instances For
                                                            instance LO.Entailment.Context.instCoeSet {F : Type u_1} {S : Type u_2} {𝓢 : S} :
                                                            Coe (Set F) (Context F 𝓢)
                                                            Equations
                                                            instance LO.Entailment.Context.instEmptyCollection {F : Type u_1} {S : Type u_2} {𝓢 : S} :
                                                            Equations
                                                            instance LO.Entailment.Context.instMembership {F : Type u_1} {S : Type u_2} {𝓢 : S} :
                                                            Membership F (Context F 𝓢)
                                                            Equations
                                                            instance LO.Entailment.Context.instHasSubset {F : Type u_1} {S : Type u_2} {𝓢 : S} :
                                                            Equations
                                                            instance LO.Entailment.Context.instCons {F : Type u_1} {S : Type u_2} {𝓢 : S} :
                                                            Cons F (Context F 𝓢)
                                                            Equations
                                                            theorem LO.Entailment.Context.mem_def {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : Context F 𝓢} :
                                                            φ Γ φ Γ.ctx
                                                            @[simp]
                                                            theorem LO.Entailment.Context.coe_subset_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {Γ Δ : Set F} :
                                                            { ctx := Γ } { ctx := Δ } Γ Δ
                                                            @[simp]
                                                            theorem LO.Entailment.Context.mem_coe_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} {φ : F} {Γ : Set F} :
                                                            φ { ctx := Γ } φ Γ
                                                            @[simp]
                                                            theorem LO.Entailment.Context.not_mem_empty {F : Type u_1} {S : Type u_2} {𝓢 : S} (φ : F) :
                                                            φ
                                                            instance LO.Entailment.Context.instCollection {F : Type u_1} {S : Type u_2} {𝓢 : S} :
                                                            Collection F (Context F 𝓢)
                                                            Equations
                                                            structure LO.Entailment.Context.Proof {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] (Γ : Context F 𝓢) (φ : F) :
                                                            Type (max u_1 u_3)
                                                            Instances For
                                                              instance LO.Entailment.Context.inst {F : Type u_1} {S : Type u_2} [LogicalConnective F] [Entailment F S] (𝓢 : S) :
                                                              Entailment F (Context F 𝓢)
                                                              Equations
                                                              @[reducible, inline]
                                                              abbrev LO.Entailment.Context.Prf {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [Entailment F S] (Γ : Set F) (φ : F) :
                                                              Type (max u_1 u_3)
                                                              Equations
                                                              Instances For
                                                                @[reducible, inline]
                                                                abbrev LO.Entailment.Context.Provable {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [Entailment F S] (Γ : Set F) (φ : F) :
                                                                Equations
                                                                Instances For
                                                                  @[reducible, inline]
                                                                  abbrev LO.Entailment.Context.Unprovable {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [Entailment F S] (Γ : Set F) (φ : F) :
                                                                  Equations
                                                                  Instances For
                                                                    @[reducible, inline]
                                                                    abbrev LO.Entailment.Context.PrfSet {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [Entailment F S] (Γ s : Set F) :
                                                                    Type (max u_1 u_3)
                                                                    Equations
                                                                    Instances For
                                                                      @[reducible, inline]
                                                                      abbrev LO.Entailment.Context.ProvableSet {F : Type u_1} {S : Type u_2} (𝓢 : S) [LogicalConnective F] [Entailment F S] (Γ s : Set F) :
                                                                      Equations
                                                                      Instances For
                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For
                                                                                Equations
                                                                                • One or more equations did not get rendered due to their size.
                                                                                Instances For
                                                                                  theorem LO.Entailment.Context.provable_iff {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] {Γ : Set F} {φ : F} :
                                                                                  Γ *⊢[𝓢]! φ ∃ (Δ : List F), (∀ ψΔ, ψ Γ) Δ ⊢[𝓢]! φ
                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  instance LO.Entailment.Context.instCompact {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] :
                                                                                  Compact (Context F 𝓢)
                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  def LO.Entailment.Context.deduct {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] [DecidableEq F] {φ ψ : F} {Γ : Set F} :
                                                                                  insert φ Γ *⊢[𝓢] ψΓ *⊢[𝓢] φ ψ
                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  Instances For
                                                                                    def LO.Entailment.Context.deductInv {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {φ ψ : F} {Γ : Set F} :
                                                                                    Γ *⊢[𝓢] φ ψinsert φ Γ *⊢[𝓢] ψ
                                                                                    Equations
                                                                                    Instances For
                                                                                      instance LO.Entailment.Context.deduction {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] [DecidableEq F] :
                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      def LO.Entailment.Context.of {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {Γ : Set F} {φ : F} (b : 𝓢 φ) :
                                                                                      Γ *⊢[𝓢] φ
                                                                                      Equations
                                                                                      Instances For
                                                                                        theorem LO.Entailment.Context.of! {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {φ : F} {Γ : Set F} (b : 𝓢 ⊢! φ) :
                                                                                        Γ *⊢[𝓢]! φ
                                                                                        def LO.Entailment.Context.mdp {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {φ ψ : F} [DecidableEq F] {Γ : Set F} (bpq : Γ *⊢[𝓢] φ ψ) (bp : Γ *⊢[𝓢] φ) :
                                                                                        Γ *⊢[𝓢] ψ
                                                                                        Equations
                                                                                        Instances For
                                                                                          theorem LO.Entailment.Context.by_axm! {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {Γ : Set F} {φ : F} [DecidableEq F] (h : φ Γ) :
                                                                                          Γ *⊢[𝓢]! φ
                                                                                          def LO.Entailment.Context.emptyPrf {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {φ : F} :
                                                                                          *⊢[𝓢] φ𝓢 φ
                                                                                          Equations
                                                                                          • One or more equations did not get rendered due to their size.
                                                                                          Instances For
                                                                                            theorem LO.Entailment.Context.emptyPrf! {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {φ : F} :
                                                                                            *⊢[𝓢]! φ𝓢 ⊢! φ
                                                                                            theorem LO.Entailment.Context.provable_iff_provable {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] {φ : F} :
                                                                                            𝓢 ⊢! φ *⊢[𝓢]! φ
                                                                                            instance LO.Entailment.Context.instHasAxiomEFQ {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] [HasAxiomEFQ 𝓢] (Γ : Context F 𝓢) :
                                                                                            Equations
                                                                                            instance LO.Entailment.Context.instHasAxiomDNE {F : Type u_1} {S : Type u_2} {𝓢 : S} [LogicalConnective F] [Entailment F S] [Entailment.Minimal 𝓢] [HasAxiomDNE 𝓢] (Γ : Context F 𝓢) :
                                                                                            Equations