instance
LO.Entailment.FiniteContext.instCoeList
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
Coe (List F) (FiniteContext F 𝓢)
Equations
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.conj
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
(Γ : FiniteContext F 𝓢)
:
F
Instances For
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.disj
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
(Γ : FiniteContext F 𝓢)
:
F
Instances For
instance
LO.Entailment.FiniteContext.instEmptyCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
EmptyCollection (FiniteContext F 𝓢)
Equations
- LO.Entailment.FiniteContext.instEmptyCollection = { emptyCollection := { ctx := [] } }
instance
LO.Entailment.FiniteContext.instMembership
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
Membership F (FiniteContext F 𝓢)
Equations
- LO.Entailment.FiniteContext.instMembership = { mem := fun (Γ : LO.Entailment.FiniteContext F 𝓢) (x : F) => x ∈ Γ.ctx }
instance
LO.Entailment.FiniteContext.instHasSubset
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
HasSubset (FiniteContext F 𝓢)
Equations
- LO.Entailment.FiniteContext.instHasSubset = { Subset := fun (x1 x2 : LO.Entailment.FiniteContext F 𝓢) => x1.ctx ⊆ x2.ctx }
instance
LO.Entailment.FiniteContext.instCons
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
Cons F (FiniteContext F 𝓢)
Equations
- LO.Entailment.FiniteContext.instCons = { cons := fun (x1 : F) (x2 : LO.Entailment.FiniteContext F 𝓢) => { ctx := x1 :: x2.ctx } }
theorem
LO.Entailment.FiniteContext.mem_def
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
{φ : F}
{Γ : FiniteContext F 𝓢}
:
@[simp]
theorem
LO.Entailment.FiniteContext.not_mem_empty
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
(φ : F)
:
φ ∉ ∅
instance
LO.Entailment.FiniteContext.instCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
Collection F (FiniteContext F 𝓢)
Equations
instance
LO.Entailment.FiniteContext.inst
{F : Type u_1}
{S : Type u_2}
[Entailment F S]
[LogicalConnective F]
(𝓢 : S)
:
Entailment F (FiniteContext F 𝓢)
Equations
- LO.Entailment.FiniteContext.inst 𝓢 = { Prf := fun (x1 : LO.Entailment.FiniteContext F 𝓢) (x2 : F) => 𝓢 ⊢ x1.conj ➝ x2 }
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.Prf
{F : Type u_1}
{S : Type u_2}
[Entailment F S]
[LogicalConnective F]
(𝓢 : S)
(Γ : List F)
(φ : F)
:
Type u_3
Instances For
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.Provable
{F : Type u_1}
{S : Type u_2}
[Entailment F S]
[LogicalConnective F]
(𝓢 : S)
(Γ : List F)
(φ : F)
:
Instances For
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.Unprovable
{F : Type u_1}
{S : Type u_2}
[Entailment F S]
[LogicalConnective F]
(𝓢 : S)
(Γ : List F)
(φ : F)
:
Instances For
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.PrfSet
{F : Type u_1}
{S : Type u_2}
[Entailment F S]
[LogicalConnective F]
(𝓢 : S)
(Γ : List F)
(s : Set F)
:
Type (max u_3 u_1)
Instances For
@[reducible, inline]
abbrev
LO.Entailment.FiniteContext.ProvableSet
{F : Type u_1}
{S : Type u_2}
[Entailment F S]
[LogicalConnective F]
(𝓢 : S)
(Γ : List F)
(s : Set F)
:
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Entailment.FiniteContext.entailment_def
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
(Γ : FiniteContext F 𝓢)
(φ : F)
:
def
LO.Entailment.FiniteContext.ofDef
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
{φ : F}
(b : 𝓢 ⊢ ⋀Γ ➝ φ)
:
Equations
Instances For
def
LO.Entailment.FiniteContext.toDef
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
{φ : F}
(b : Γ ⊢[𝓢] φ)
:
Equations
Instances For
theorem
LO.Entailment.FiniteContext.toₛ!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
{φ : F}
(b : Γ ⊢[𝓢]! φ)
:
theorem
LO.Entailment.FiniteContext.provable_iff
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
{φ : F}
:
def
LO.Entailment.FiniteContext.cast
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ' : List F}
{φ' : F}
{Γ : List F}
{φ : F}
(d : Γ ⊢[𝓢] φ)
(eΓ : Γ = Γ')
(eφ : φ = φ')
:
Equations
- LO.Entailment.FiniteContext.cast d eΓ eφ = eΓ ▸ eφ ▸ d
Instances For
instance
LO.Entailment.FiniteContext.instAxiomatizedOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[DecidableEq F]
:
Axiomatized (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Entailment.FiniteContext.instCompact
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
:
Compact (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
def
LO.Entailment.FiniteContext.nthAxm
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{Γ : List F}
(n : ℕ)
(h : n < Γ.length := by simp)
:
Equations
Instances For
theorem
LO.Entailment.FiniteContext.nth_axm!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{Γ : List F}
(n : ℕ)
(h : n < Γ.length := by simp)
:
def
LO.Entailment.FiniteContext.byAxm
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
[DecidableEq F]
{φ : F}
(h : φ ∈ Γ := by simp)
:
Instances For
theorem
LO.Entailment.FiniteContext.by_axm!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
[DecidableEq F]
{φ : F}
(h : φ ∈ Γ := by simp)
:
def
LO.Entailment.FiniteContext.weakening
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ Δ : List F}
[Entailment.Minimal 𝓢]
[DecidableEq F]
(h : Γ ⊆ Δ)
{φ : F}
:
Instances For
theorem
LO.Entailment.FiniteContext.weakening!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ Δ : List F}
[Entailment.Minimal 𝓢]
[DecidableEq F]
(h : Γ ⊆ Δ)
{φ : F}
:
def
LO.Entailment.FiniteContext.of
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ : F}
(b : 𝓢 ⊢ φ)
:
Equations
Instances For
def
LO.Entailment.FiniteContext.emptyPrf
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ : F}
:
Instances For
def
LO.Entailment.FiniteContext.provable_iff_provable
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ : F}
:
Equations
- ⋯ = ⋯
Instances For
theorem
LO.Entailment.FiniteContext.of'!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ : F}
[DecidableEq F]
(h : 𝓢 ⊢! φ)
:
def
LO.Entailment.FiniteContext.id
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ : F}
:
Equations
Instances For
@[simp]
theorem
LO.Entailment.FiniteContext.id!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ : F}
:
def
LO.Entailment.FiniteContext.byAxm₀
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ : F}
:
Instances For
theorem
LO.Entailment.FiniteContext.by_axm₀!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ : F}
:
def
LO.Entailment.FiniteContext.byAxm₁
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ ψ : F}
:
Instances For
theorem
LO.Entailment.FiniteContext.by_axm₁!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ ψ : F}
:
def
LO.Entailment.FiniteContext.byAxm₂
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ ψ χ : F}
:
Instances For
theorem
LO.Entailment.FiniteContext.by_axm₂!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ ψ χ : F}
:
instance
LO.Entailment.FiniteContext.instModusPonens
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instModusPonens = { mdp := fun {φ ψ : F} => LO.Entailment.mdp₁ }
instance
LO.Entailment.FiniteContext.instHasAxiomVerum
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomVerum = { verum := LO.Entailment.FiniteContext.of LO.Entailment.verum }
instance
LO.Entailment.FiniteContext.instHasAxiomImply₁
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomImply₁ = { imply₁ := fun (x x_1 : F) => LO.Entailment.FiniteContext.of LO.Entailment.imply₁ }
instance
LO.Entailment.FiniteContext.instHasAxiomImply₂
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomImply₂ = { imply₂ := fun (x x_1 x_2 : F) => LO.Entailment.FiniteContext.of LO.Entailment.imply₂ }
instance
LO.Entailment.FiniteContext.instHasAxiomAndElim
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomAndElim = { and₁ := fun (x x_1 : F) => LO.Entailment.FiniteContext.of LO.Entailment.and₁, and₂ := fun (x x_1 : F) => LO.Entailment.FiniteContext.of LO.Entailment.and₂ }
instance
LO.Entailment.FiniteContext.instHasAxiomAndInst
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomAndInst = { and₃ := fun (x x_1 : F) => LO.Entailment.FiniteContext.of LO.Entailment.and₃ }
instance
LO.Entailment.FiniteContext.instHasAxiomOrInst
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomOrInst = { or₁ := fun (x x_1 : F) => LO.Entailment.FiniteContext.of LO.Entailment.or₁, or₂ := fun (x x_1 : F) => LO.Entailment.FiniteContext.of LO.Entailment.or₂ }
instance
LO.Entailment.FiniteContext.instHasAxiomOrElim
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomOrElim = { or₃ := fun (x x_1 x_2 : F) => LO.Entailment.FiniteContext.of LO.Entailment.or₃ }
instance
LO.Entailment.FiniteContext.instNegationEquiv
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instNegationEquiv = { neg_equiv := fun (x : F) => LO.Entailment.FiniteContext.of LO.Entailment.neg_equiv }
instance
LO.Entailment.FiniteContext.instMinimal
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
def
LO.Entailment.FiniteContext.mdp'
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ Δ : List F}
[Entailment.Minimal 𝓢]
{φ ψ : F}
[DecidableEq F]
(bΓ : Γ ⊢[𝓢] φ ➝ ψ)
(bΔ : Δ ⊢[𝓢] φ)
:
Equations
- LO.Entailment.FiniteContext.mdp' bΓ bΔ = LO.Entailment.wk ⋯ bΓ⨀LO.Entailment.wk ⋯ bΔ
Instances For
def
LO.Entailment.FiniteContext.deduct
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Entailment.FiniteContext.deduct = fun (b : [φ] ⊢[𝓢] ψ) => LO.Entailment.FiniteContext.ofDef (LO.Entailment.imply₁' (LO.Entailment.FiniteContext.toDef b))
Instances For
theorem
LO.Entailment.FiniteContext.deduct!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ ψ : F}
(h : (φ :: Γ) ⊢[𝓢]! ψ)
:
def
LO.Entailment.FiniteContext.deductInv
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
:
Equations
- One or more equations did not get rendered due to their size.
- LO.Entailment.FiniteContext.deductInv = fun (b : [] ⊢[𝓢] φ ➝ ψ) => LO.Entailment.FiniteContext.ofDef (LO.Entailment.FiniteContext.toDef b⨀LO.Entailment.verum)
Instances For
theorem
LO.Entailment.FiniteContext.deductInv!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
{Γ : List F}
[Entailment.Minimal 𝓢]
{φ ψ : F}
(h : Γ ⊢[𝓢]! φ ➝ ψ)
:
theorem
LO.Entailment.FiniteContext.deduct_iff
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
{Γ : List F}
:
def
LO.Entailment.FiniteContext.deduct'
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
:
Equations
Instances For
theorem
LO.Entailment.FiniteContext.deduct'!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
(h : [φ] ⊢[𝓢]! ψ)
:
def
LO.Entailment.FiniteContext.deductInv'
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
:
Equations
Instances For
theorem
LO.Entailment.FiniteContext.deductInv'!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
{φ ψ : F}
(h : 𝓢 ⊢! φ ➝ ψ)
:
instance
LO.Entailment.FiniteContext.deduction
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
:
Deduction (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Entailment.FiniteContext.instStrongCutOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[DecidableEq F]
:
StrongCut (FiniteContext F 𝓢) (FiniteContext F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Entailment.FiniteContext.instHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomEFQ = { efq := fun (x : F) => LO.Entailment.FiniteContext.of LO.Entailment.efq }
instance
LO.Entailment.FiniteContext.instDeductiveExplosionOfHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
:
instance
LO.Entailment.FiniteContext.instInt
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[Entailment.Int 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
instance
LO.Entailment.FiniteContext.instHasAxiomDNE
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[HasAxiomDNE 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
- Γ.instHasAxiomDNE = { dne := fun (φ : F) => LO.Entailment.FiniteContext.of (LO.Entailment.HasAxiomDNE.dne φ) }
instance
LO.Entailment.FiniteContext.instCl
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[Entailment F S]
[LogicalConnective F]
[Entailment.Minimal 𝓢]
[Entailment.Cl 𝓢]
(Γ : FiniteContext F 𝓢)
:
Equations
Equations
instance
LO.Entailment.Context.instEmptyCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
EmptyCollection (Context F 𝓢)
Equations
- LO.Entailment.Context.instEmptyCollection = { emptyCollection := { ctx := ∅ } }
instance
LO.Entailment.Context.instMembership
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
Membership F (Context F 𝓢)
Equations
- LO.Entailment.Context.instMembership = { mem := fun (Γ : LO.Entailment.Context F 𝓢) (x : F) => x ∈ Γ.ctx }
Equations
- LO.Entailment.Context.instHasSubset = { Subset := fun (x1 x2 : LO.Entailment.Context F 𝓢) => x1.ctx ⊆ x2.ctx }
Equations
- LO.Entailment.Context.instCons = { cons := fun (x1 : F) (x2 : LO.Entailment.Context F 𝓢) => { ctx := insert x1 x2.ctx } }
@[simp]
instance
LO.Entailment.Context.instCollection
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
:
Collection F (Context F 𝓢)
Equations
structure
LO.Entailment.Context.Proof
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
(Γ : Context F 𝓢)
(φ : F)
:
Type (max u_1 u_3)
- ctx : List F
Instances For
instance
LO.Entailment.Context.inst
{F : Type u_1}
{S : Type u_2}
[LogicalConnective F]
[Entailment F S]
(𝓢 : S)
:
Entailment F (Context F 𝓢)
Equations
- LO.Entailment.Context.inst 𝓢 = { Prf := LO.Entailment.Context.Proof }
@[reducible, inline]
abbrev
LO.Entailment.Context.Prf
{F : Type u_1}
{S : Type u_2}
(𝓢 : S)
[LogicalConnective F]
[Entailment F S]
(Γ : Set F)
(φ : F)
:
Type (max u_1 u_3)
Instances For
@[reducible, inline]
abbrev
LO.Entailment.Context.Provable
{F : Type u_1}
{S : Type u_2}
(𝓢 : S)
[LogicalConnective F]
[Entailment F S]
(Γ : Set F)
(φ : F)
:
Instances For
@[reducible, inline]
abbrev
LO.Entailment.Context.Unprovable
{F : Type u_1}
{S : Type u_2}
(𝓢 : S)
[LogicalConnective F]
[Entailment F S]
(Γ : Set F)
(φ : F)
:
Instances For
@[reducible, inline]
abbrev
LO.Entailment.Context.PrfSet
{F : Type u_1}
{S : Type u_2}
(𝓢 : S)
[LogicalConnective F]
[Entailment F S]
(Γ s : Set F)
:
Type (max u_1 u_3)
Instances For
@[reducible, inline]
abbrev
LO.Entailment.Context.ProvableSet
{F : Type u_1}
{S : Type u_2}
(𝓢 : S)
[LogicalConnective F]
[Entailment F S]
(Γ s : Set F)
:
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Entailment.Context.provable_iff
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
{Γ : Set F}
{φ : F}
:
instance
LO.Entailment.Context.instAxiomatizedOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[DecidableEq F]
:
Axiomatized (Context F 𝓢)
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Entailment.Context.instCompact
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
:
Equations
- One or more equations did not get rendered due to their size.
def
LO.Entailment.Context.deduct
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[DecidableEq F]
{φ ψ : F}
{Γ : Set F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Entailment.Context.deductInv
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{φ ψ : F}
{Γ : Set F}
:
Equations
- LO.Entailment.Context.deductInv { ctx := Δ, subset := h, prf := b } = { ctx := φ :: Δ, subset := ⋯, prf := LO.Entailment.FiniteContext.deductInv b }
Instances For
instance
LO.Entailment.Context.deduction
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[DecidableEq F]
:
Equations
- One or more equations did not get rendered due to their size.
def
LO.Entailment.Context.of
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{Γ : Set F}
{φ : F}
(b : 𝓢 ⊢ φ)
:
Equations
- LO.Entailment.Context.of b = { ctx := [], subset := ⋯, prf := LO.Entailment.FiniteContext.of b }
Instances For
theorem
LO.Entailment.Context.of!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{φ : F}
{Γ : Set F}
(b : 𝓢 ⊢! φ)
:
def
LO.Entailment.Context.mdp
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{φ ψ : F}
[DecidableEq F]
{Γ : Set F}
(bpq : Γ *⊢[𝓢] φ ➝ ψ)
(bp : Γ *⊢[𝓢] φ)
:
Equations
- LO.Entailment.Context.mdp bpq bp = { ctx := bpq.ctx ++ bp.ctx, subset := ⋯, prf := LO.Entailment.FiniteContext.mdp' bpq.prf bp.prf }
Instances For
theorem
LO.Entailment.Context.by_axm!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{Γ : Set F}
{φ : F}
[DecidableEq F]
(h : φ ∈ Γ)
:
def
LO.Entailment.Context.emptyPrf
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Entailment.Context.emptyPrf!
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{φ : F}
:
theorem
LO.Entailment.Context.provable_iff_provable
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
{φ : F}
:
instance
LO.Entailment.Context.minimal
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[DecidableEq F]
(Γ : Context F 𝓢)
:
Equations
instance
LO.Entailment.Context.instHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
(Γ : Context F 𝓢)
:
Equations
- Γ.instHasAxiomEFQ = { efq := fun (x : F) => LO.Entailment.Context.of LO.Entailment.efq }
instance
LO.Entailment.Context.instHasAxiomDNE
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[HasAxiomDNE 𝓢]
(Γ : Context F 𝓢)
:
Equations
- Γ.instHasAxiomDNE = { dne := fun (φ : F) => LO.Entailment.Context.of (LO.Entailment.HasAxiomDNE.dne φ) }
instance
LO.Entailment.Context.instDeductiveExplosionFiniteContextOfHasAxiomEFQ
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[Entailment.Minimal 𝓢]
[HasAxiomEFQ 𝓢]
:
instance
LO.Entailment.Context.instIntOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[DecidableEq F]
[Entailment.Int 𝓢]
(Γ : Context F 𝓢)
:
Equations
instance
LO.Entailment.Context.instClOfDecidableEq
{F : Type u_1}
{S : Type u_2}
{𝓢 : S}
[LogicalConnective F]
[Entailment F S]
[DecidableEq F]
[Entailment.Cl 𝓢]
(Γ : Context F 𝓢)
: