theorem
LO.Modal.Kripke.valid_on_FiniteTransitiveTreeClass_of_valid_on_TransitiveIrreflexiveFrameClass
{φ : Formula ℕ}
(h : FrameClass.finite_trans_irrefl ⊧ φ)
(F : Frame)
(r : F.World)
[F.IsFiniteTree r]
:
theorem
LO.Modal.Kripke.satisfies_at_root_on_FiniteTransitiveTree
{φ : Formula ℕ}
(h : ∀ (F : Frame) (r : F.World) [inst : Finite F.World] [inst : F.IsTree r], F ⊧ φ)
(M : Model)
(r : M.World)
[M.IsFiniteTree r]
:
Formula.Kripke.Satisfies M r φ
theorem
LO.Modal.Kripke.valid_on_TransitiveIrreflexiveFrameClass_of_satisfies_at_root_on_FiniteTransitiveTree
{φ : Formula ℕ}
:
(∀ (M : Model) (r : M.World) [inst : M.IsFiniteTree r], Formula.Kripke.Satisfies M r φ) →
FrameClass.finite_trans_irrefl ⊧ φ
theorem
LO.Modal.Hilbert.GL.Kripke.iff_provable_satisfies_FiniteTransitiveTree
{φ : Formula ℕ}
:
Hilbert.GL ⊢! φ ↔ ∀ (M : Kripke.Model) (r : M.World) [inst : M.IsFiniteTree r], Formula.Kripke.Satisfies M r φ
theorem
LO.Modal.Hilbert.GL.Kripke.iff_unprovable_exists_unsatisfies_FiniteTransitiveTree
{φ : Formula ℕ}
:
Hilbert.GL ⊬ φ ↔ ∃ (M : Kripke.Model) (r : M.World), M.IsFiniteTree r ∧ ¬Formula.Kripke.Satisfies M r φ