@[reducible, inline]
Equations
Instances For
Equations
- LO.Propositional.instFintypeSubformulaOf = { elems := Finset.univ, complete := ⋯ }
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.Propositional.HintikkaPair.Consistent L H = (L ⊬ (⩕ (x : LO.Propositional.SubformulaOf φ) ∈ H.1, ↑x) ➝ ⩖ (x : LO.Propositional.SubformulaOf φ) ∈ H.2, ↑x)
Instances For
theorem
LO.Propositional.HintikkaPair.iff_consistent
{φ : Formula ℕ}
{L : Logic ℕ}
{H : HintikkaPair φ}
:
theorem
LO.Propositional.HintikkaPair.iff_not_consistent
{φ : Formula ℕ}
{L : Logic ℕ}
{H : HintikkaPair φ}
:
Equations
- H.Saturated = (H.1 ∪ H.2 = Finset.univ)
Instances For
theorem
LO.Propositional.HintikkaPair.mem₁_of_not_mem₂_of_saturated
{φ : Formula ℕ}
{H : HintikkaPair φ}
{ψ : SubformulaOf φ}
(h : H.Saturated)
:
ψ ∉ H.2 → ψ ∈ H.1
theorem
LO.Propositional.HintikkaPair.mem₂_of_not_mem₁_of_saturated
{φ : Formula ℕ}
{H : HintikkaPair φ}
{ψ : SubformulaOf φ}
(h : H.Saturated)
:
ψ ∉ H.1 → ψ ∈ H.2
def
LO.Propositional.HintikkaPair.insert₁
{φ : Formula ℕ}
(H : HintikkaPair φ)
(ψ : { ψ : Formula ℕ // ψ ∈ φ.subformulas })
:
Instances For
def
LO.Propositional.HintikkaPair.insert₂
{φ : Formula ℕ}
(H : HintikkaPair φ)
(ψ : { ψ : Formula ℕ // ψ ∈ φ.subformulas })
:
Instances For
theorem
LO.Propositional.HintikkaPair.either_consistent_insert
{φ : Formula ℕ}
{L : Logic ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
(H_consis : Consistent L H)
(ψ : { ψ : Formula ℕ // ψ ∈ φ.subformulas })
:
noncomputable def
LO.Propositional.HintikkaPair.lindenbaum.next
{φ : Formula ℕ}
(L : Logic ℕ)
(ψ : SubformulaOf φ)
(H : HintikkaPair φ)
:
Equations
- LO.Propositional.HintikkaPair.lindenbaum.next L ψ H = if LO.Propositional.HintikkaPair.Consistent L (H.insert₁ ψ) then H.insert₁ ψ else H.insert₂ ψ
Instances For
theorem
LO.Propositional.HintikkaPair.lindenbaum.next_consistent
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
{ψ : SubformulaOf φ}
(H_consis : Consistent L H)
:
Consistent L (next L ψ H)
theorem
LO.Propositional.HintikkaPair.lindenbaum.next_monotone₁
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
{ψ : SubformulaOf φ}
:
theorem
LO.Propositional.HintikkaPair.lindenbaum.next_monotone₂
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
{ψ : SubformulaOf φ}
:
theorem
LO.Propositional.HintikkaPair.lindenbaum.next_either_mem
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
(ψ : SubformulaOf φ)
:
noncomputable def
LO.Propositional.HintikkaPair.lindenbaum.enum
{φ : Formula ℕ}
(L : Logic ℕ)
(H : HintikkaPair φ)
:
List (SubformulaOf φ) → HintikkaPair φ
Equations
Instances For
theorem
LO.Propositional.HintikkaPair.lindenbaum.enum_consistent
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
(H_consis : Consistent L H)
(Γ : List (SubformulaOf φ))
:
Consistent L (enum L H Γ)
theorem
LO.Propositional.HintikkaPair.lindenbaum.enum_monotone₁
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
{Γ : List (SubformulaOf φ)}
:
theorem
LO.Propositional.HintikkaPair.lindenbaum.enum_monotone₂
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
{Γ : List (SubformulaOf φ)}
:
theorem
LO.Propositional.HintikkaPair.lindenbaum.enum_of_mem
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
{Γ : List (SubformulaOf φ)}
{ψ : SubformulaOf φ}
(hψ : ψ ∈ Γ)
:
noncomputable def
LO.Propositional.HintikkaPair.lindenbaum.sat
{φ : Formula ℕ}
(L : Logic ℕ)
(H : HintikkaPair φ)
:
Equations
Instances For
theorem
LO.Propositional.HintikkaPair.lindenbaum.sat_saturated
{L : Logic ℕ}
{φ : Formula ℕ}
{H : HintikkaPair φ}
[Entailment.VF L]
:
theorem
LO.Propositional.HintikkaPair.lindenbaum
{φ : Formula ℕ}
{L : Logic ℕ}
[Entailment.VF L]
(H : HintikkaPair φ)
(H_consis : Consistent L H)
:
∃ (H' : HintikkaPair φ), H.1 ⊆ H'.1 ∧ H.2 ⊆ H'.2 ∧ Consistent L H' ∧ H'.Saturated
@[reducible, inline]
Equations
Instances For
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.lindenbaum
{φ : Formula ℕ}
{L : Logic ℕ}
[Entailment.VF L]
(H : HintikkaPair φ)
(H_consis : HintikkaPair.Consistent L H)
:
∃ (H' : ConsistentSaturatedHintikkaPair L φ), H.1 ⊆ (↑H').1 ∧ H.2 ⊆ (↑H').2
@[simp]
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.consistent
{φ : Formula ℕ}
{L : Logic ℕ}
[Entailment.VF L]
(H : ConsistentSaturatedHintikkaPair L φ)
:
@[simp]
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.saturated
{φ : Formula ℕ}
{L : Logic ℕ}
[Entailment.VF L]
(H : ConsistentSaturatedHintikkaPair L φ)
:
(↑H).Saturated
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.not_mem_both
{φ : Formula ℕ}
{L : Logic ℕ}
{H : ConsistentSaturatedHintikkaPair L φ}
[Entailment.VF L]
{ψ : SubformulaOf φ}
:
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.iff_mem₁_not_mem₂
{φ : Formula ℕ}
{L : Logic ℕ}
{H : ConsistentSaturatedHintikkaPair L φ}
[Entailment.VF L]
{ψ : SubformulaOf φ}
:
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.iff_mem₂_not_mem₁
{φ : Formula ℕ}
{L : Logic ℕ}
{H : ConsistentSaturatedHintikkaPair L φ}
[Entailment.VF L]
{ψ : SubformulaOf φ}
:
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.imp_closed
{φ : Formula ℕ}
{L : Logic ℕ}
{H : ConsistentSaturatedHintikkaPair L φ}
[Entailment.VF L]
{ψ χ : Formula ℕ}
(hSψ : ψ ∈ φ.subformulas)
(hSχ : χ ∈ φ.subformulas)
:
@[simp]
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.no_bot
{φ : Formula ℕ}
{L : Logic ℕ}
{H : ConsistentSaturatedHintikkaPair L φ}
[Entailment.VF L]
(h : ⊥ ∈ φ.subformulas)
:
@[simp]
theorem
LO.Propositional.ConsistentSaturatedHintikkaPair.mem_top
{φ : Formula ℕ}
{L : Logic ℕ}
{H : ConsistentSaturatedHintikkaPair L φ}
[Entailment.VF L]
(h : ⊤ ∈ φ.subformulas)
:
noncomputable def
LO.Propositional.FMT.HintikkaModel
(L : Logic ℕ)
[Entailment.VF L]
[Entailment.Consistent L]
[Entailment.Disjunctive L]
(φ : Formula ℕ)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Propositional.FMT.HintikkaModel.truthlemma
{L : Logic ℕ}
[Entailment.VF L]
[Entailment.Disjunctive L]
[Entailment.Consistent L]
{φ ψ : Formula ℕ}
{H : (HintikkaModel L φ).World}
(hsub : ψ ∈ φ.subformulas)
:
theorem
LO.Propositional.FMT.provable_of_validOnHintikkaModel
{L : Logic ℕ}
[Entailment.VF L]
[Entailment.Disjunctive L]
[Entailment.Consistent L]
{φ : Formula ℕ}
:
HintikkaModel L φ ⊧ φ → L ⊢ φ