Documentation
Foundation
.
Propositional
.
Logic
.
WellKnown
Search
return to top
source
Imports
Init
Foundation.Propositional.Hilbert.WellKnown
Foundation.Propositional.Logic.Basic
Foundation.Propositional.Kripke.Hilbert.Cl
Foundation.Propositional.Kripke.Hilbert.KC
Foundation.Propositional.Kripke.Hilbert.LC
Imported by
LO
.
Propositional
.
Logic
.
KC
LO
.
Propositional
.
Logic
.
KC
.
Kripke
.
eq_confluent
LO
.
Propositional
.
Logic
.
KC
.
Kripke
.
eq_finite_confluent
LO
.
Propositional
.
Logic
.
LC
LO
.
Propositional
.
Logic
.
LC
.
Kripke
.
eq_connected
LO
.
Propositional
.
Logic
.
LC
.
Kripke
.
eq_finite_connected
LO
.
Propositional
.
Logic
.
Cl
LO
.
Propositional
.
Logic
.
Cl
.
Kripke
.
eq_euclidean
LO
.
Propositional
.
Logic
.
Cl
.
Kripke
.
eq_finite_euclidean
LO
.
Propositional
.
Logic
.
Cl
.
Kripke
.
eq_finite_symmetric
source
@[reducible, inline]
abbrev
LO
.
Propositional
.
Logic
.
KC
:
Logic
Equations
LO.Propositional.Logic.KC
=
LO.Propositional.Hilbert.KC
.
logic
Instances For
source
theorem
LO
.
Propositional
.
Logic
.
KC
.
Kripke
.
eq_confluent
:
Logic.KC
=
Kripke.FrameClass.confluent
.
logic
source
theorem
LO
.
Propositional
.
Logic
.
KC
.
Kripke
.
eq_finite_confluent
:
Logic.KC
=
Kripke.FrameClass.finite_confluent
.
logic
source
@[reducible, inline]
abbrev
LO
.
Propositional
.
Logic
.
LC
:
Logic
Equations
LO.Propositional.Logic.LC
=
LO.Propositional.Hilbert.LC
.
logic
Instances For
source
theorem
LO
.
Propositional
.
Logic
.
LC
.
Kripke
.
eq_connected
:
Logic.LC
=
Kripke.FrameClass.connected
.
logic
source
theorem
LO
.
Propositional
.
Logic
.
LC
.
Kripke
.
eq_finite_connected
:
Logic.LC
=
Kripke.FrameClass.finite_connected
.
logic
source
@[reducible, inline]
abbrev
LO
.
Propositional
.
Logic
.
Cl
:
Logic
Equations
LO.Propositional.Logic.Cl
=
LO.Propositional.Hilbert.Cl
.
logic
Instances For
source
theorem
LO
.
Propositional
.
Logic
.
Cl
.
Kripke
.
eq_euclidean
:
Logic.Cl
=
Kripke.FrameClass.euclidean
.
logic
source
theorem
LO
.
Propositional
.
Logic
.
Cl
.
Kripke
.
eq_finite_euclidean
:
Logic.Cl
=
Kripke.FrameClass.finite_euclidean
.
logic
source
theorem
LO
.
Propositional
.
Logic
.
Cl
.
Kripke
.
eq_finite_symmetric
:
Logic.Cl
=
Kripke.FrameClass.finite_symmetric
.
logic