Instances For
theorem
List.toFinset_map
{α : Type u}
{β : Type v}
[DecidableEq α]
[DecidableEq β]
{f : α → β}
(l : List α)
:
@[simp]
Equations
- List.remove a = List.filter fun (x : α) => decide (x ≠ a)
Instances For
@[simp]
theorem
List.mem_of_mem_remove
{α : Type u_1}
[DecidableEq α]
{a b : α}
{l : List α}
(h : b ∈ remove a l)
:
@[simp]
@[simp]
@[simp]
theorem
List.remove_subset_remove
{α : Type u_1}
[DecidableEq α]
(a : α)
{l₁ l₂ : List α}
(h : l₁ ⊆ l₂)
:
theorem
List.remove_map_substet_map_remove
{α : Type u_2}
{β : Type u_1}
[DecidableEq α]
[DecidableEq β]
(f : α → β)
(l : List α)
(a : α)
:
def
List.induction_with_singleton'
{α : Type u_2}
{motive : List α → Sort u_1}
(hnil : motive [])
(hsingle : (a : α) → motive [a])
(hcons : (a b : α) → (as : List α) → motive (b :: as) → motive (a :: b :: as))
(as : List α)
:
motive as
Equations
- List.induction_with_singleton' hnil hsingle hcons [] = hnil
- List.induction_with_singleton' hnil hsingle hcons [a] = hsingle a
- List.induction_with_singleton' hnil hsingle hcons (a :: b :: as) = hcons a b as (List.induction_with_singleton' hnil hsingle hcons (b :: as))