def
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(L : Language)
[L.Encodable]
[L.LORDefinable]
(s : V)
:
Equations
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.isFormulaSet
(L : Language)
[L.Encodable]
[L.LORDefinable]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
:
instance
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
:
instance
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.definable'
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{Γ : SigmaPiDelta}
{m : ℕ}
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.empty
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.singleton
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{p : V}
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.insert_iff
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{p s : V}
:
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.insert
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{p s : V}
:
IsFormulaSet L (Insert.insert p s) → IsFormula L p ∧ IsFormulaSet L s
Alias of the forward direction of LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.insert_iff.
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.union
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{s₁ s₂ : V}
:
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.setShift
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(L : Language)
[L.Encodable]
[L.LORDefinable]
(s : V)
:
V
Equations
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.setShiftGraph
(L : Language)
[L.Encodable]
[L.LORDefinable]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.mem_setShift_iff
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{s y : V}
:
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.setShift
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{s : V}
(h : IsFormulaSet L s)
:
IsFormulaSet L (Bootstrapping.setShift L s)
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.shift_mem_setShift
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{p s : V}
(h : p ∈ s)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.IsFormulaSet.setShift_iff
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{s : V}
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.mem_setShift_union
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{s t : V}
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.mem_setShift_insert
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{x s : V}
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.setShift_empty
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
:
instance
LO.FirstOrder.Arithmetic.Bootstrapping.setShift.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
:
instance
LO.FirstOrder.Arithmetic.Bootstrapping.setShift.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
:
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.axL
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
V
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.verumIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s : V)
:
V
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.wkRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
V
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.shiftRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
V
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.axm
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
V
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.axL.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.verumIntro.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.andIntro.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.orIntro.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.allIntro.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.exsIntro.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.wkRule.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.shiftRule.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.cutRule_defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.axm_defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_axL
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.arity_lt_axL
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_verumIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dp dq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.p_lt_andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dp dq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.q_lt_andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dp dq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.dp_lt_andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dp dq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.dq_lt_andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dp dq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_orIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.p_lt_orIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.q_lt_orIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.d_lt_orIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_allIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.p_lt_allIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.s_lt_allIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_exsIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p t d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.p_lt_exsIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p t d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.t_lt_exsIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p t d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.d_lt_exsIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p t d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_wkRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.d_lt_wkRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_shiftRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.d_lt_shiftRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_cutRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d₁ d₂ : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.p_lt_cutRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d₁ d₂ : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.d₁_lt_cutRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d₁ d₂ : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.d₂_lt_cutRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d₁ d₂ : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.seq_lt_axm
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.p_lt_axm
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_axL
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_verumIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dp dq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_orIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p q dpq : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_allIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_exsIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p t d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_wkRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_shiftRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s d : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_cutRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p d₁ d₂ : V)
:
@[simp]
theorem
LO.FirstOrder.Arithmetic.Bootstrapping.fstIdx_axm
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(s p : V)
:
@[reducible, inline]
noncomputable abbrev
LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.conseq
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
(x : V)
:
V
Equations
Instances For
def
LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.Phi
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(C : Set V)
(d : V)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.blueprint
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.construction
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
- LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.construction T = { Φ := fun (x : Fin 0 → V) => LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.Phi T, defined := ⋯, monotone := ⋯ }
Instances For
instance
LO.FirstOrder.Arithmetic.Bootstrapping.Derivation.instStrongFiniteConstruction
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
def
LO.FirstOrder.Theory.Derivation
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
V → Prop
Equations
Instances For
def
LO.FirstOrder.Theory.DerivationOf
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(d s : V)
:
Equations
- T.DerivationOf d s = (LO.FirstOrder.Arithmetic.fstIdx d = s ∧ T.Derivation d)
Instances For
def
LO.FirstOrder.Theory.Derivable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(s : V)
:
Equations
- T.Derivable s = ∃ (d : V), T.DerivationOf d s
Instances For
def
LO.FirstOrder.Theory.Proof
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(d φ : V)
:
Equations
- T.Proof d φ = T.DerivationOf d {φ}
Instances For
def
LO.FirstOrder.Theory.Provable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(φ : V)
:
Instances For
noncomputable def
LO.FirstOrder.Theory.derivation
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
Instances For
noncomputable def
LO.FirstOrder.Theory.derivationOf
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.FirstOrder.Theory.derivable
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.FirstOrder.Theory.proof
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.FirstOrder.Theory.provable
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.FirstOrder.Theory.provabilityPred'
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(σ : Sentence L)
:
Equations
Instances For
@[simp]
theorem
LO.FirstOrder.Theory.provabilityPred'_val
{L : Language}
[L.Encodable]
[L.LORDefinable]
(T : Theory L)
[T.Δ₁]
(σ : Sentence L)
:
instance
LO.FirstOrder.Theory.Derivation.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Derivation.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Derivation.definable'
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{Γ : SigmaPiDelta}
{m : ℕ}
:
instance
LO.FirstOrder.Theory.DerivationOf.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.DerivationOf.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.DerivationOf.definable'
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{Γ : SigmaPiDelta}
{m : ℕ}
:
instance
LO.FirstOrder.Theory.Derivable.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Derivable.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Derivable.definable'
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance for definability tactic
instance
LO.FirstOrder.Theory.Proof.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Proof.definable'
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{Γ : SigmaPiDelta}
{m : ℕ}
:
instance
LO.FirstOrder.Theory.Provable.defined
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Provable.definable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance
LO.FirstOrder.Theory.Provable.definable'
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
:
instance for definability tactic
theorem
LO.FirstOrder.Theory.Derivation.case_iff
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{d : V}
:
T.Derivation d ↔ Arithmetic.Bootstrapping.IsFormulaSet L (Arithmetic.fstIdx d) ∧ ((∃ (s : V) (p : V), d = Arithmetic.Bootstrapping.axL s p ∧ p ∈ s ∧ Arithmetic.Bootstrapping.neg L p ∈ s) ∨ (∃ (s : V), d = Arithmetic.Bootstrapping.verumIntro s ∧ Arithmetic.Bootstrapping.qqVerum ∈ s) ∨ (∃ (s : V) (p : V) (q : V) (dp : V) (dq : V),
d = Arithmetic.Bootstrapping.andIntro s p q dp dq ∧ Arithmetic.Bootstrapping.qqAnd p q ∈ s ∧ T.DerivationOf dp (insert p s) ∧ T.DerivationOf dq (insert q s)) ∨ (∃ (s : V) (p : V) (q : V) (dpq : V),
d = Arithmetic.Bootstrapping.orIntro s p q dpq ∧ Arithmetic.Bootstrapping.qqOr p q ∈ s ∧ T.DerivationOf dpq (insert p (insert q s))) ∨ (∃ (s : V) (p : V) (dp : V),
d = Arithmetic.Bootstrapping.allIntro s p dp ∧ Arithmetic.Bootstrapping.qqAll p ∈ s ∧ T.DerivationOf dp
(insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s))) ∨ (∃ (s : V) (p : V) (t : V) (dp : V),
d = Arithmetic.Bootstrapping.exsIntro s p t dp ∧ Arithmetic.Bootstrapping.qqExs p ∈ s ∧ Arithmetic.Bootstrapping.IsTerm L t ∧ T.DerivationOf dp (insert (Arithmetic.Bootstrapping.substs1 L t p) s)) ∨ (∃ (s : V) (d' : V),
d = Arithmetic.Bootstrapping.wkRule s d' ∧ Arithmetic.fstIdx d' ⊆ s ∧ T.Derivation d') ∨ (∃ (s : V) (d' : V),
d = Arithmetic.Bootstrapping.shiftRule s d' ∧ s = Arithmetic.Bootstrapping.setShift L (Arithmetic.fstIdx d') ∧ T.Derivation d') ∨ (∃ (s : V) (p : V) (d₁ : V) (d₂ : V),
d = Arithmetic.Bootstrapping.cutRule s p d₁ d₂ ∧ T.DerivationOf d₁ (insert p s) ∧ T.DerivationOf d₂ (insert (Arithmetic.Bootstrapping.neg L p) s)) ∨ ∃ (s : V) (p : V), d = Arithmetic.Bootstrapping.axm s p ∧ p ∈ s ∧ p ∈ T.Δ₁Class)
theorem
LO.FirstOrder.Theory.Derivation.case
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{d : V}
:
T.Derivation d →
Arithmetic.Bootstrapping.IsFormulaSet L (Arithmetic.fstIdx d) ∧ ((∃ (s : V) (p : V), d = Arithmetic.Bootstrapping.axL s p ∧ p ∈ s ∧ Arithmetic.Bootstrapping.neg L p ∈ s) ∨ (∃ (s : V), d = Arithmetic.Bootstrapping.verumIntro s ∧ Arithmetic.Bootstrapping.qqVerum ∈ s) ∨ (∃ (s : V) (p : V) (q : V) (dp : V) (dq : V),
d = Arithmetic.Bootstrapping.andIntro s p q dp dq ∧ Arithmetic.Bootstrapping.qqAnd p q ∈ s ∧ T.DerivationOf dp (insert p s) ∧ T.DerivationOf dq (insert q s)) ∨ (∃ (s : V) (p : V) (q : V) (dpq : V),
d = Arithmetic.Bootstrapping.orIntro s p q dpq ∧ Arithmetic.Bootstrapping.qqOr p q ∈ s ∧ T.DerivationOf dpq (insert p (insert q s))) ∨ (∃ (s : V) (p : V) (dp : V),
d = Arithmetic.Bootstrapping.allIntro s p dp ∧ Arithmetic.Bootstrapping.qqAll p ∈ s ∧ T.DerivationOf dp
(insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s))) ∨ (∃ (s : V) (p : V) (t : V) (dp : V),
d = Arithmetic.Bootstrapping.exsIntro s p t dp ∧ Arithmetic.Bootstrapping.qqExs p ∈ s ∧ Arithmetic.Bootstrapping.IsTerm L t ∧ T.DerivationOf dp (insert (Arithmetic.Bootstrapping.substs1 L t p) s)) ∨ (∃ (s : V) (d' : V),
d = Arithmetic.Bootstrapping.wkRule s d' ∧ Arithmetic.fstIdx d' ⊆ s ∧ T.Derivation d') ∨ (∃ (s : V) (d' : V),
d = Arithmetic.Bootstrapping.shiftRule s d' ∧ s = Arithmetic.Bootstrapping.setShift L (Arithmetic.fstIdx d') ∧ T.Derivation d') ∨ (∃ (s : V) (p : V) (d₁ : V) (d₂ : V),
d = Arithmetic.Bootstrapping.cutRule s p d₁ d₂ ∧ T.DerivationOf d₁ (insert p s) ∧ T.DerivationOf d₂ (insert (Arithmetic.Bootstrapping.neg L p) s)) ∨ ∃ (s : V) (p : V), d = Arithmetic.Bootstrapping.axm s p ∧ p ∈ s ∧ p ∈ T.Δ₁Class)
Alias of the forward direction of LO.FirstOrder.Theory.Derivation.case_iff.
theorem
LO.FirstOrder.Theory.Derivation.mk
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{d : V}
:
Arithmetic.Bootstrapping.IsFormulaSet L (Arithmetic.fstIdx d) ∧ ((∃ (s : V) (p : V), d = Arithmetic.Bootstrapping.axL s p ∧ p ∈ s ∧ Arithmetic.Bootstrapping.neg L p ∈ s) ∨ (∃ (s : V), d = Arithmetic.Bootstrapping.verumIntro s ∧ Arithmetic.Bootstrapping.qqVerum ∈ s) ∨ (∃ (s : V) (p : V) (q : V) (dp : V) (dq : V),
d = Arithmetic.Bootstrapping.andIntro s p q dp dq ∧ Arithmetic.Bootstrapping.qqAnd p q ∈ s ∧ T.DerivationOf dp (insert p s) ∧ T.DerivationOf dq (insert q s)) ∨ (∃ (s : V) (p : V) (q : V) (dpq : V),
d = Arithmetic.Bootstrapping.orIntro s p q dpq ∧ Arithmetic.Bootstrapping.qqOr p q ∈ s ∧ T.DerivationOf dpq (insert p (insert q s))) ∨ (∃ (s : V) (p : V) (dp : V),
d = Arithmetic.Bootstrapping.allIntro s p dp ∧ Arithmetic.Bootstrapping.qqAll p ∈ s ∧ T.DerivationOf dp
(insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s))) ∨ (∃ (s : V) (p : V) (t : V) (dp : V),
d = Arithmetic.Bootstrapping.exsIntro s p t dp ∧ Arithmetic.Bootstrapping.qqExs p ∈ s ∧ Arithmetic.Bootstrapping.IsTerm L t ∧ T.DerivationOf dp (insert (Arithmetic.Bootstrapping.substs1 L t p) s)) ∨ (∃ (s : V) (d' : V),
d = Arithmetic.Bootstrapping.wkRule s d' ∧ Arithmetic.fstIdx d' ⊆ s ∧ T.Derivation d') ∨ (∃ (s : V) (d' : V),
d = Arithmetic.Bootstrapping.shiftRule s d' ∧ s = Arithmetic.Bootstrapping.setShift L (Arithmetic.fstIdx d') ∧ T.Derivation d') ∨ (∃ (s : V) (p : V) (d₁ : V) (d₂ : V),
d = Arithmetic.Bootstrapping.cutRule s p d₁ d₂ ∧ T.DerivationOf d₁ (insert p s) ∧ T.DerivationOf d₂ (insert (Arithmetic.Bootstrapping.neg L p) s)) ∨ ∃ (s : V) (p : V), d = Arithmetic.Bootstrapping.axm s p ∧ p ∈ s ∧ p ∈ T.Δ₁Class) →
T.Derivation d
Alias of the reverse direction of LO.FirstOrder.Theory.Derivation.case_iff.
theorem
LO.FirstOrder.Theory.Derivation.induction1
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
(Γ : SigmaPiDelta)
{P : V → Prop}
(hP : { Γ := Γ, rank := 1 }-Predicate P)
{d : V}
(hd : T.Derivation d)
(hAxL :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ p ∈ s, Arithmetic.Bootstrapping.neg L p ∈ s → P (Arithmetic.Bootstrapping.axL s p))
(hVerumIntro :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
Arithmetic.Bootstrapping.qqVerum ∈ s → P (Arithmetic.Bootstrapping.verumIntro s))
(hAnd :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (p q dp dq : V),
Arithmetic.Bootstrapping.qqAnd p q ∈ s →
T.DerivationOf dp (insert p s) →
T.DerivationOf dq (insert q s) → P dp → P dq → P (Arithmetic.Bootstrapping.andIntro s p q dp dq))
(hOr :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (p q d : V),
Arithmetic.Bootstrapping.qqOr p q ∈ s →
T.DerivationOf d (insert p (insert q s)) → P d → P (Arithmetic.Bootstrapping.orIntro s p q d))
(hAll :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (p d : V),
Arithmetic.Bootstrapping.qqAll p ∈ s →
T.DerivationOf d (insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s)) →
P d → P (Arithmetic.Bootstrapping.allIntro s p d))
(hExs :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (p t d : V),
Arithmetic.Bootstrapping.qqExs p ∈ s →
Arithmetic.Bootstrapping.IsTerm L t →
T.DerivationOf d (insert (Arithmetic.Bootstrapping.substs1 L t p) s) →
P d → P (Arithmetic.Bootstrapping.exsIntro s p t d))
(hWk :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (d : V), Arithmetic.fstIdx d ⊆ s → T.Derivation d → P d → P (Arithmetic.Bootstrapping.wkRule s d))
(hShift :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (d : V),
s = Arithmetic.Bootstrapping.setShift L (Arithmetic.fstIdx d) →
T.Derivation d → P d → P (Arithmetic.Bootstrapping.shiftRule s d))
(hCut :
∀ (s : V),
Arithmetic.Bootstrapping.IsFormulaSet L s →
∀ (p d₁ d₂ : V),
T.DerivationOf d₁ (insert p s) →
T.DerivationOf d₂ (insert (Arithmetic.Bootstrapping.neg L p) s) →
P d₁ → P d₂ → P (Arithmetic.Bootstrapping.cutRule s p d₁ d₂))
(hRoot :
∀ (s : V), Arithmetic.Bootstrapping.IsFormulaSet L s → ∀ p ∈ s, p ∈ T.Δ₁Class → P (Arithmetic.Bootstrapping.axm s p))
:
P d
theorem
LO.FirstOrder.Theory.Derivation.isFormulaSet
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{d : V}
(h : T.Derivation d)
:
theorem
LO.FirstOrder.Theory.DerivationOf.isFormulaSet
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{d s : V}
(h : T.DerivationOf d s)
:
theorem
LO.FirstOrder.Theory.Derivation.axL
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(h : p ∈ s)
(hn : Arithmetic.Bootstrapping.neg L p ∈ s)
:
theorem
LO.FirstOrder.Theory.Derivation.verumIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(h : Arithmetic.Bootstrapping.qqVerum ∈ s)
:
theorem
LO.FirstOrder.Theory.Derivation.andIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p q dp dq : V}
(h : Arithmetic.Bootstrapping.qqAnd p q ∈ s)
(hdp : T.DerivationOf dp (insert p s))
(hdq : T.DerivationOf dq (insert q s))
:
T.Derivation (Arithmetic.Bootstrapping.andIntro s p q dp dq)
theorem
LO.FirstOrder.Theory.Derivation.orIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p q dpq : V}
(h : Arithmetic.Bootstrapping.qqOr p q ∈ s)
(hdpq : T.DerivationOf dpq (insert p (insert q s)))
:
T.Derivation (Arithmetic.Bootstrapping.orIntro s p q dpq)
theorem
LO.FirstOrder.Theory.Derivation.allIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p dp : V}
(h : Arithmetic.Bootstrapping.qqAll p ∈ s)
(hdp : T.DerivationOf dp (insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s)))
:
T.Derivation (Arithmetic.Bootstrapping.allIntro s p dp)
theorem
LO.FirstOrder.Theory.Derivation.exsIntro
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p t dp : V}
(h : Arithmetic.Bootstrapping.qqExs p ∈ s)
(ht : Arithmetic.Bootstrapping.IsTerm L t)
(hdp : T.DerivationOf dp (insert (Arithmetic.Bootstrapping.substs1 L t p) s))
:
T.Derivation (Arithmetic.Bootstrapping.exsIntro s p t dp)
theorem
LO.FirstOrder.Theory.Derivation.wkRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s s' d : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(h : s' ⊆ s)
(hd : T.DerivationOf d s')
:
theorem
LO.FirstOrder.Theory.Derivation.shiftRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s d : V}
(hd : T.DerivationOf d s)
:
theorem
LO.FirstOrder.Theory.Derivation.cutRule
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p d₁ d₂ : V}
(hd₁ : T.DerivationOf d₁ (insert p s))
(hd₂ : T.DerivationOf d₂ (insert (Arithmetic.Bootstrapping.neg L p) s))
:
T.Derivation (Arithmetic.Bootstrapping.cutRule s p d₁ d₂)
theorem
LO.FirstOrder.Theory.Derivation.axm
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(hp : p ∈ s)
(hT : p ∈ T.Δ₁Class)
:
theorem
LO.FirstOrder.Theory.Derivation.of_ss
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{U : Theory L}
[U.Δ₁]
(h : T.Δ₁Class ⊆ U.Δ₁Class)
{d : V}
:
T.Derivation d → U.Derivation d
theorem
LO.FirstOrder.Theory.Derivable.isFormulaSet
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(h : T.Derivable s)
:
theorem
LO.FirstOrder.Theory.Derivable.em
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(p : V)
(h : p ∈ s)
(hn : Arithmetic.Bootstrapping.neg L p ∈ s)
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.verum
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(h : Arithmetic.Bootstrapping.qqVerum ∈ s)
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.and_m
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p q : V}
(h : Arithmetic.Bootstrapping.qqAnd p q ∈ s)
(hp : T.Derivable (insert p s))
(hq : T.Derivable (insert q s))
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.or_m
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p q : V}
(h : Arithmetic.Bootstrapping.qqOr p q ∈ s)
(hpq : T.Derivable (insert p (insert q s)))
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.all_m
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p : V}
(h : Arithmetic.Bootstrapping.qqAll p ∈ s)
(hp : T.Derivable (insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s)))
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.ex_m
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p t : V}
(h : Arithmetic.Bootstrapping.qqExs p ∈ s)
(ht : Arithmetic.Bootstrapping.IsTerm L t)
(hp : T.Derivable (insert (Arithmetic.Bootstrapping.substs1 L t p) s))
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.wk
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s s' : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(h : s' ⊆ s)
(hd : T.Derivable s')
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.shift
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(hd : T.Derivable s)
:
theorem
LO.FirstOrder.Theory.Derivable.cut
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(p : V)
(hd₁ : T.Derivable (insert p s))
(hd₂ : T.Derivable (insert (Arithmetic.Bootstrapping.neg L p) s))
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.by_axm
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(p : V)
(hp : p ∈ s)
(hT : p ∈ T.Δ₁Class)
:
T.Derivable s
theorem
LO.FirstOrder.Theory.Derivable.and
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p q : V}
(hp : T.Derivable (insert p s))
(hq : T.Derivable (insert q s))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqAnd p q) s)
theorem
LO.FirstOrder.Theory.Derivable.or
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{s p q : V}
(hpq : T.Derivable (insert p (insert q s)))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqOr p q) s)
theorem
LO.FirstOrder.Theory.Derivable.conj
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
(ps : V)
{s : V}
(hs : Arithmetic.Bootstrapping.IsFormulaSet L s)
(ds : ∀ i < Arithmetic.len ps, T.Derivable (insert (Arithmetic.nth ps i) s))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqConj ps) s)
Crucial inducion for formalized $\Sigma_1$-completeness.
theorem
LO.FirstOrder.Theory.Derivable.disjDistr
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
(ps s : V)
(d : T.Derivable (Arithmetic.vecToSet ps ∪ s))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqDisj ps) s)
theorem
LO.FirstOrder.Theory.Derivable.disj
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
(ps s : V)
{i : V}
(hps : ∀ i < Arithmetic.len ps, Arithmetic.Bootstrapping.IsFormula L (Arithmetic.nth ps i))
(hi : i < Arithmetic.len ps)
(d : T.Derivable (insert (Arithmetic.nth ps i) s))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqDisj ps) s)
theorem
LO.FirstOrder.Theory.Derivable.all
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{p s : V}
(hp : Arithmetic.Bootstrapping.IsSemiformula L 1 p)
(dp : T.Derivable (insert (Arithmetic.Bootstrapping.free L p) (Arithmetic.Bootstrapping.setShift L s)))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqAll p) s)
theorem
LO.FirstOrder.Theory.Derivable.exs
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{p t s : V}
(hp : Arithmetic.Bootstrapping.IsSemiformula L 1 p)
(ht : Arithmetic.Bootstrapping.IsTerm L t)
(dp : T.Derivable (insert (Arithmetic.Bootstrapping.substs1 L t p) s))
:
T.Derivable (insert (Arithmetic.Bootstrapping.qqExs p) s)
theorem
LO.FirstOrder.Theory.Provable.toDerivable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{φ : V}
:
Alias of the forward direction of LO.FirstOrder.Theory.internal_provable_iff_internal_derivable.
theorem
LO.FirstOrder.Theory.Derivable.toProvable
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
{φ : V}
:
Alias of the reverse direction of LO.FirstOrder.Theory.internal_provable_iff_internal_derivable.
theorem
LO.FirstOrder.Theory.Provable.conj
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
(ps : V)
(ds : ∀ i < Arithmetic.len ps, T.Provable (Arithmetic.nth ps i))
:
theorem
LO.FirstOrder.Theory.Provable.disj
{V : Type u_1}
[ORingStructure V]
[V ⊧ₘ* 𝗜𝚺₁]
{L : Language}
[L.Encodable]
[L.LORDefinable]
{T : Theory L}
[T.Δ₁]
(ps : V)
{i : V}
(hps : ∀ i < Arithmetic.len ps, Arithmetic.Bootstrapping.IsFormula L (Arithmetic.nth ps i))
(hi : i < Arithmetic.len ps)
(d : T.Provable (Arithmetic.nth ps i))
: