Documentation
Foundation
.
InterpretabilityLogic
.
Veltman
.
Logic
.
IL_M
Search
return to top
source
Imports
Init
Foundation.InterpretabilityLogic.Veltman.AxiomM
Foundation.InterpretabilityLogic.Veltman.Logic.IL_R_W
Imported by
LO
.
InterpretabilityLogic
.
Veltman
.
Frame
.
IsILM
LO
.
InterpretabilityLogic
.
Veltman
.
FrameClass
.
IL_M
LO
.
InterpretabilityLogic
.
Veltman
.
instIsILMTrivialFrame
LO
.
InterpretabilityLogic
.
ILM
.
Veltman
.
sound
LO
.
InterpretabilityLogic
.
ILM
.
instConsistentFormulaNatLogicIL_M
LO
.
InterpretabilityLogic
.
instStrictlyWeakerThanFormulaNatLogicIL_R_WIL_M
source
class
LO
.
InterpretabilityLogic
.
Veltman
.
Frame
.
IsILM
(
F
:
Frame
)
extends
F
.
IsIL
,
F
.
HasAxiomM
:
Prop
S_J1
{
w
x
:
F
.
World
}
:
w
≺
x
→
x
≺[
w
]
x
S_J4
{
w
x
y
:
F
.
World
}
:
x
≺[
w
]
y
→
w
≺
y
S_J2
{
w
x
y
z
:
F
.
World
}
:
x
≺[
w
]
y
→
y
≺[
w
]
z
→
x
≺[
w
]
z
S_J5
{
w
x
y
:
F
.
World
}
:
w
≺
x
→
x
≺
y
→
x
≺[
w
]
y
S_M
{
w
x
y
z
:
F
.
World
}
:
x
≺[
w
]
y
→
y
≺
z
→
x
≺
z
Instances
source
@[reducible, inline]
abbrev
LO
.
InterpretabilityLogic
.
Veltman
.
FrameClass
.
IL_M
:
FrameClass
Equations
LO.InterpretabilityLogic.Veltman.FrameClass.IL_M
=
{
F
:
LO.InterpretabilityLogic.Veltman.Frame
|
F
.
IsILM
}
Instances For
source
instance
LO
.
InterpretabilityLogic
.
Veltman
.
instIsILMTrivialFrame
:
trivialFrame
.
IsILM
source
instance
LO
.
InterpretabilityLogic
.
ILM
.
Veltman
.
sound
:
Sound
InterpretabilityLogic.IL_M
Veltman.FrameClass.IL_M
source
instance
LO
.
InterpretabilityLogic
.
ILM
.
instConsistentFormulaNatLogicIL_M
:
Entailment.Consistent
InterpretabilityLogic.IL_M
source
instance
LO
.
InterpretabilityLogic
.
instStrictlyWeakerThanFormulaNatLogicIL_R_WIL_M
:
InterpretabilityLogic.IL_R_W
⪱
InterpretabilityLogic.IL_M