Provability logic of arithmetic theory #
def
LO.Modal.Logic.IsProvabilityLogic
(L : Logic ℕ)
(T U : FirstOrder.ArithmeticTheory)
[FirstOrder.Theory.Δ₁ T]
:
L is provability logic of T relative to metatheory U
Equations
- L.IsProvabilityLogic T U = ∀ (A : LO.Modal.Formula ℕ), L ⊢ A ↔ ∀ (f : T.StandardRealization), U ⊢ ↑f A
Instances For
def
LO.Modal.Logic.inst_Łukasiewiicz_of_isProvabilityLogic
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
{L : Logic ℕ}
(hPL : L.IsProvabilityLogic T U)
:
L is Łukasiewicz if L is provability logic.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Modal.Logic.inst_Cl_of_isProvabilityLogic
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
{L : Logic ℕ}
(hPL : L.IsProvabilityLogic T U)
:
Equations
Instances For
theorem
LO.Modal.Logic.subset_GL_of_isProvabilityLogic
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
{L : Logic ℕ}
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(hPL : L.IsProvabilityLogic T U)
:
theorem
LO.Modal.Logic.provable_GL_of_isProvabilityLogic
{T U : FirstOrder.ArithmeticTheory}
[FirstOrder.Theory.Δ₁ T]
{L : Logic ℕ}
{A : Formula ℕ}
[𝗜𝚺₁ ⪯ T]
[𝗜𝚺₁ ⪯ U]
[T ⪯ U]
(hPL : L.IsProvabilityLogic T U)
:
Provability Logic of T relative to metatheory U
Equations
- T.provabilityLogicOn U = {A : LO.Modal.Formula ℕ | ∀ (f : T.StandardRealization), U ⊢ ↑f A}
Instances For
@[simp]
theorem
LO.FirstOrder.ArithmeticTheory.isProvabilityLogic_provabilityLogicOn
{T U : ArithmeticTheory}
[Theory.Δ₁ T]
:
(T.provabilityLogicOn U).IsProvabilityLogic T U
theorem
LO.FirstOrder.ArithmeticTheory.provabilityLogicOn.provable_iff
{T U : ArithmeticTheory}
[Theory.Δ₁ T]
{A : Modal.Formula ℕ}
: