Documentation

Arithmetization.ISigmaOne.HFS.Vec

Vec #

Equations
  • LO.Arith.instCons_arithmetization = { cons := fun (x x_1 : V) => x, x_1 + 1 }
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.cons_def {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
cons x v = x, v + 1
@[simp]
theorem LO.Arith.fstIdx_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
@[simp]
theorem LO.Arith.sndIdx_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
theorem LO.Arith.succ_eq_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) :
x + 1 = cons (π₁ x) (π₂ x)
@[simp]
theorem LO.Arith.lt_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
x < cons x v
@[simp]
theorem LO.Arith.lt_cons' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
v < cons x v
@[simp]
theorem LO.Arith.zero_lt_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
0 < cons x v
@[simp]
theorem LO.Arith.cons_ne_zero {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
cons x v 0
@[simp]
theorem LO.Arith.zero_ne_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
0 cons x v
theorem LO.Arith.nil_or_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (z : V) :
z = 0 ∃ (x : V) (v : V), z = cons x v
@[simp]
theorem LO.Arith.cons_inj {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x₁ : V) (x₂ : V) (v₁ : V) (v₂ : V) :
cons x₁ v₁ = cons x₂ v₂ x₁ = x₂ v₁ = v₂
theorem LO.Arith.cons_le_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x₁ : V} {x₂ : V} {v₁ : V} {v₂ : V} (hx : x₁ x₂) (hv : v₁ v₂) :
cons x₁ v₁ cons x₂ v₂
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • =
Equations
  • =
Equations
  • One or more equations did not get rendered due to their size.
instance LO.Arith.mkVec₂_definable {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
𝚺₁-Function₂ fun (x y : V) => ?[x, y]
Equations
  • =
instance LO.Arith.mkVec₂_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Function₂ fun (x y : V) => ?[x, y]
Equations
  • =

N-th element of List #

def LO.Arith.Nth.Phi {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (C : Set V) (pr : V) :
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Arith.Nth.construction = { Φ := fun (x : Fin 0V) => LO.Arith.Nth.Phi, defined := , monotone := }
Instances For
Equations
  • LO.Arith.Nth.instFiniteConstruction = { finite := }
Equations
  • LO.Arith.Nth.Graph = LO.Arith.Nth.construction.Fixpoint ![]
Instances For
Equations
  • =
instance LO.Arith.Nth.graph_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
{ Γ := 𝚺, rank := 0 + 1 }-Predicate LO.Arith.Nth.Graph
Equations
  • =
@[simp]
theorem LO.Arith.Nth.zero_ne_add_one {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) :
0 x + 1

TODO: move

theorem LO.Arith.Nth.graph_case {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {pr : V} :
LO.Arith.Nth.Graph pr (∃ (v : V), pr = v, 0, LO.Arith.fstIdx v) ∃ (v : V) (i : V) (x : V), pr = v, i + 1, x LO.Arith.Nth.Graph LO.Arith.sndIdx v, i, x
theorem LO.Arith.Nth.graph_zero {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {x : V} :
LO.Arith.Nth.Graph v, 0, x x = LO.Arith.fstIdx v
theorem LO.Arith.Nth.graph_succ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {i : V} {x : V} :
LO.Arith.Nth.Graph v, i + 1, x LO.Arith.Nth.Graph LO.Arith.sndIdx v, i, x
theorem LO.Arith.Nth.graph_exists {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (i : V) :
∃ (x : V), LO.Arith.Nth.Graph v, i, x
theorem LO.Arith.Nth.graph_unique {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {i : V} {x₁ : V} {x₂ : V} :
LO.Arith.Nth.Graph v, i, x₁LO.Arith.Nth.Graph v, i, x₂x₁ = x₂
theorem LO.Arith.Nth.graph_existsUnique {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (i : V) :
∃! x : V, LO.Arith.Nth.Graph v, i, x
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Arith.nth_graph {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (i : V) :
LO.Arith.Nth.Graph v, i, LO.Arith.nth v i
theorem LO.Arith.nth_eq_of_graph {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {i : V} {x : V} (h : LO.Arith.Nth.Graph v, i, x) :
theorem LO.Arith.nth_succ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (i : V) :
@[simp]
theorem LO.Arith.nth_cons_zero {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
LO.Arith.nth (cons x v) 0 = x
@[simp]
theorem LO.Arith.nth_cons_succ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) (i : V) :
LO.Arith.nth (cons x v) (i + 1) = LO.Arith.nth v i
@[simp]
theorem LO.Arith.nth_cons_one {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
@[simp]
theorem LO.Arith.nth_cons_two {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
theorem LO.Arith.cons_cases {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) :
x = 0 ∃ (y : V) (v : V), x = cons y v
theorem LO.Arith.cons_induction {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) {P : VProp} (hP : { Γ := Γ, rank := 1 }-Predicate P) (nil : P 0) (cons : ∀ (x v : V), P vP (Cons.cons x v)) (v : V) :
P v
theorem LO.Arith.cons_induction_sigma1 {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {P : VProp} (hP : 𝚺₁-Predicate P) (nil : P 0) (cons : ∀ (x v : V), P vP (Cons.cons x v)) (v : V) :
P v
theorem LO.Arith.cons_induction_pi1 {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {P : VProp} (hP : 𝚷₁-Predicate P) (nil : P 0) (cons : ∀ (x v : V), P vP (Cons.cons x v)) (v : V) :
P v
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • =
instance LO.Arith.nth_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Function₂ LO.Arith.nth
Equations
  • =
theorem LO.Arith.cons_absolute {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : ) (v : ) :
(cons a v) = cons a v

TODO: move

@[simp]
theorem LO.Arith.nth_zero_idx {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (i : V) :
theorem LO.Arith.nth_lt_of_pos {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} (hv : 0 < v) (i : V) :
@[simp]
theorem LO.Arith.nth_le {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (i : V) :

Inductivly Construction of Function on List #

structure LO.Arith.VecRec.Blueprint (arity : ) :
Equations
  • One or more equations did not get rendered due to their size.
def LO.Arith.VecRec.Blueprint.graphDef {arity : } (β : LO.Arith.VecRec.Blueprint arity) :
𝚺₁.Semisentence (arity + 1)
Equations
  • β.graphDef = β.blueprint.fixpointDef
def LO.Arith.VecRec.Blueprint.resultDef {arity : } (β : LO.Arith.VecRec.Blueprint arity) :
𝚺₁.Semisentence (arity + 2)
Equations
  • One or more equations did not get rendered due to their size.
structure LO.Arith.VecRec.Construction (V : Type u_1) [LO.ORingStruc V] {arity : } (β : LO.Arith.VecRec.Blueprint arity) :
Type u_1
theorem LO.Arith.VecRec.Construction.cons_defined {V : Type u_1} [LO.ORingStruc V] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (self : LO.Arith.VecRec.Construction V β) :
LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction (fun (v : Fin arity.succ.succ.succV) => self.cons (fun (x : Fin arity) => v x.succ.succ.succ) (v 0) (v 1) (v 2)) β.cons
def LO.Arith.VecRec.Construction.Phi {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) (C : Set V) (pr : V) :
Equations
  • c.Phi param C pr = (pr = 0, c.nil param ∃ (x : V) (xs : V) (ih : V), pr = cons x xs, c.cons param x xs ih xs, ih C)
Equations
  • c.construction = { Φ := c.Phi, defined := , monotone := }
Instances For
Equations
  • c.instFiniteConstruction = { finite := }
def LO.Arith.VecRec.Construction.Graph {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) :
VProp
Equations
  • c.Graph param = c.construction.Fixpoint param
Instances For
theorem LO.Arith.VecRec.Construction.graph_defined {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) :
LO.FirstOrder.Arith.HierarchySymbol.Defined (fun (v : Fin arity.succV) => c.Graph (fun (x : Fin arity) => v x.succ) (v 0)) β.graphDef
instance LO.Arith.VecRec.Construction.graph_definable {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) :
𝚺₁.Boldface fun (v : Fin arity.succV) => c.Graph (fun (x : Fin arity) => v x.succ) (v 0)
Equations
  • =
instance LO.Arith.VecRec.Construction.graph_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) :
𝚺₁-Predicate c.Graph param
Equations
  • =
instance LO.Arith.VecRec.Construction.graph_definable'' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) :
{ Γ := 𝚺, rank := 0 + 1 }-Predicate c.Graph param
Equations
  • =
theorem LO.Arith.VecRec.Construction.graph_case {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) {param : Fin arityV} {pr : V} :
c.Graph param pr pr = 0, c.nil param ∃ (x : V) (xs : V) (ih : V), pr = cons x xs, c.cons param x xs ih c.Graph param xs, ih
theorem LO.Arith.VecRec.Construction.graph_nil {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) {param : Fin arityV} {l : V} :
c.Graph param 0, l l = c.nil param
theorem LO.Arith.VecRec.Construction.graph_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) {param : Fin arityV} {x : V} {xs : V} {y : V} :
c.Graph param cons x xs, y ∃ (y' : V), y = c.cons param x xs y' c.Graph param xs, y'
theorem LO.Arith.VecRec.Construction.graph_exists {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) (xs : V) :
∃ (y : V), c.Graph param xs, y
theorem LO.Arith.VecRec.Construction.graph_unique {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) {param : Fin arityV} {xs : V} {y₁ : V} {y₂ : V} :
c.Graph param xs, y₁c.Graph param xs, y₂y₁ = y₂
theorem LO.Arith.VecRec.Construction.graph_existsUnique {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) (xs : V) :
∃! y : V, c.Graph param xs, y
def LO.Arith.VecRec.Construction.result {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) (xs : V) :
V
Equations
theorem LO.Arith.VecRec.Construction.result_graph {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) (xs : V) :
c.Graph param xs, c.result param xs
theorem LO.Arith.VecRec.Construction.result_eq_of_graph {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) {xs : V} {y : V} (h : c.Graph param xs, y) :
c.result param xs = y
@[simp]
theorem LO.Arith.VecRec.Construction.result_nil {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) :
c.result param 0 = c.nil param
@[simp]
theorem LO.Arith.VecRec.Construction.result_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (param : Fin arityV) (x : V) (xs : V) :
c.result param (cons x xs) = c.cons param x xs (c.result param xs)
theorem LO.Arith.VecRec.Construction.result_defined {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) :
LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction (fun (v : Fin arity.succV) => c.result (fun (x : Fin arity) => v x.succ) (v 0)) β.resultDef
@[simp]
theorem LO.Arith.VecRec.Construction.eval_resultDef {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (v : Fin (arity + 2)V) :
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val β.resultDef) v 0 = c.result (fun (x : Fin arity) => v x.succ.succ) (v 1)
instance LO.Arith.VecRec.Construction.result_definable {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) :
𝚺₁.BoldfaceFunction fun (v : Fin arity.succV) => c.result (fun (x : Fin arity) => v x.succ) (v 0)
Equations
  • =
instance LO.Arith.VecRec.Construction.result_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {arity : } {β : LO.Arith.VecRec.Blueprint arity} (c : LO.Arith.VecRec.Construction V β) (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }.BoldfaceFunction fun (v : Fin arity.succV) => c.result (fun (x : Fin arity) => v x.succ) (v 0)
Equations
  • =

Length of List #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Arith.Len.construction = { nil := fun (x : Fin 0V) => 0, cons := fun (x : Fin 0V) (x x ih : V) => ih + 1, nil_defined := , cons_defined := }
def LO.Arith.len {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) :
V
Equations
Instances For
@[simp]
theorem LO.Arith.len_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
Equations
  • =
instance LO.Arith.len_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.len
Equations
  • =
@[simp]
theorem LO.Arith.nth_lt_len {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {i : V} (hl : LO.Arith.len v i) :
@[simp]
theorem LO.Arith.len_le {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) :
theorem LO.Arith.nth_ext {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v₁ : V} {v₂ : V} (hl : LO.Arith.len v₁ = LO.Arith.len v₂) (H : i < LO.Arith.len v₁, LO.Arith.nth v₁ i = LO.Arith.nth v₂ i) :
v₁ = v₂
theorem LO.Arith.nth_ext' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (l : V) {v₁ : V} {v₂ : V} (hl₁ : LO.Arith.len v₁ = l) (hl₂ : LO.Arith.len v₂ = l) (H : i < l, LO.Arith.nth v₁ i = LO.Arith.nth v₂ i) :
v₁ = v₂
theorem LO.Arith.le_of_nth_le_nth {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v₁ : V} {v₂ : V} (hl : LO.Arith.len v₁ = LO.Arith.len v₂) (H : i < LO.Arith.len v₁, LO.Arith.nth v₁ i LO.Arith.nth v₂ i) :
v₁ v₂
theorem LO.Arith.nth_lt_self {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {i : V} (hi : i < LO.Arith.len v) :
theorem LO.Arith.sigmaOne_skolem_vec {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {R : VVProp} (hP : 𝚺₁-Relation R) {l : V} (H : x < l, ∃ (y : V), R x y) :
∃ (v : V), LO.Arith.len v = l i < l, R i (LO.Arith.nth v i)
theorem LO.Arith.eq_singleton_iff_len_eq_one {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} :
LO.Arith.len v = 1 ∃ (x : V), v = ?[x]
theorem LO.Arith.eq_doubleton_of_len_eq_two {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} :
LO.Arith.len v = 2 ∃ (x : V) (y : V), v = ?[x, y]

Maximum of List #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Arith.ListMax.construction = { nil := fun (x : Fin 0V) => 0, cons := fun (x : Fin 0V) (x x_1 ih : V) => max x ih, nil_defined := , cons_defined := }
def LO.Arith.listMax {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) :
V
Equations
Instances For
@[simp]
theorem LO.Arith.listMax_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) :
Equations
  • =
instance LO.Arith.listMax_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.listMax
Equations
  • =
theorem LO.Arith.listMaxss_le {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {v : V} {z : V} (h : i < LO.Arith.len v, LO.Arith.nth v i z) :

Take Last k-Element #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
def LO.Arith.takeLast {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (k : V) :
V
Equations
Instances For
@[simp]
theorem LO.Arith.takeLast_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {k : V} (x : V) (v : V) :
LO.Arith.takeLast (cons x v) k = if LO.Arith.len v < k then cons x v else LO.Arith.takeLast v k
Equations
  • =
instance LO.Arith.takeLast_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Function₂ LO.Arith.takeLast
Equations
  • =
@[simp]
theorem LO.Arith.add_sub_add {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) (b : V) (c : V) :
a + c - (b + c) = a - b

TODO: move

@[simp]

Concatation #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Arith.Concat.construction = { nil := fun (param : Fin 1V) => ?[param 0], cons := fun (x : Fin 1V) (x x_1 ih : V) => cons x ih, nil_defined := , cons_defined := }
def LO.Arith.concat {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (z : V) :
V
Equations
Instances For
@[simp]
theorem LO.Arith.concat_nil {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (z : V) :
@[simp]
theorem LO.Arith.concat_cons {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (v : V) (z : V) :
Equations
  • =
instance LO.Arith.concat_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Function₂ LO.Arith.concat
Equations
  • =
@[simp]
theorem LO.Arith.concat_nth_lt {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (z : V) {i : V} (hi : i < LO.Arith.len v) :
@[simp]
theorem LO.Arith.concat_nth_len' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) (z : V) {i : V} (hi : LO.Arith.len v = i) :

Membership #

@[simp]
theorem LO.Arith.memVec_insert_fst {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x : V} {v : V} :
@[simp]
theorem LO.Arith.memVec_cons_iff {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x : V} {y : V} {v : V} :
theorem LO.Arith.le_of_memVec {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {x : V} {v : V} (h : LO.Arith.MemVec x v) :
x v
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • =
instance LO.Arith.memVec_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Relation LO.Arith.MemVec
Equations
  • =

Subset #

@[simp]
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • =
instance LO.Arith.subsetVec_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (Γ : LO.SigmaPiDelta) (m : ) :
{ Γ := Γ, rank := m + 1 }-Relation LO.Arith.SubsetVec
Equations
  • =

Repeat #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Arith.repeatVec.construction = { zero := fun (x : Fin 1V) => 0, succ := fun (x : Fin 1V) (x_1 ih : V) => cons (x 0) ih, zero_defined := , succ_defined := }
def LO.Arith.repeatVec {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (k : V) :
V

repeatVec x k = x ∷ x ∷ x ∷ ... k times ... ∷ 0

Equations
Instances For
@[simp]
theorem LO.Arith.repeatVec_succ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (k : V) :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • =
instance LO.Arith.repeatVec_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : } (Γ : LO.SigmaPiDelta) :
{ Γ := Γ, rank := m + 1 }-Function₂ LO.Arith.repeatVec
Equations
  • =
@[simp]
@[simp]
theorem LO.Arith.le_repaetVec {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (k : V) :
theorem LO.Arith.nth_repeatVec {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (x : V) (k : V) {i : V} (h : i < k) :

Convert to Set #

Equations
  • One or more equations did not get rendered due to their size.
Equations
  • LO.Arith.VecToSet.construction = { nil := fun (x : Fin 0V) => , cons := fun (x : Fin 0V) (x x_1 ih : V) => insert x ih, nil_defined := , cons_defined := }
def LO.Arith.vecToSet {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (v : V) :
V
Equations
Instances For
@[simp]
Equations
  • =
instance LO.Arith.vecToSet_definable' {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {m : } (Γ : LO.SigmaPiDelta) :
{ Γ := Γ, rank := m + 1 }-Function₁ LO.Arith.vecToSet
Equations
  • =
@[simp]