Documentation

Logic.IntProp.Deduction

Equations
  • One or more equations did not get rendered due to their size.
Instances
    inductive LO.IntProp.Deduction {α : Type u} (Λ : LO.IntProp.Hilbert α) :
    Equations
    • LO.IntProp.instSystemFormulaHilbert = { Prf := LO.IntProp.Deduction }
    Equations
    • LO.IntProp.instMinimalHilbertFormula = LO.System.Minimal.mk
    Equations
    Equations
    Equations
    Equations
    • LO.IntProp.instIntuitionisticHilbertFormulaOfIncludeEFQ = LO.System.Intuitionistic.mk
    Equations
    • LO.IntProp.instClassicalHilbertFormulaOfIncludeDNE = LO.System.Classical.mk
    Equations
    • LO.IntProp.instClassicalHilbertFormulaOfIncludeEFQOfIncludeLEM = LO.System.Classical.mk
    theorem LO.IntProp.Deduction.eaxm! {α : Type u} {Λ : LO.IntProp.Hilbert α} {p : LO.IntProp.Formula α} (h : p Ax(Λ)) :
    Λ ⊢! p
    @[reducible, inline]
    Equations
    @[reducible, inline]
    Equations
    • LO.IntProp.Hilbert.Minimal = { axiomSet := }
    Equations
    • LO.IntProp.Hilbert.instIncludeEFQIntuitionistic = { include_EFQ := }
    Equations
    • LO.IntProp.Hilbert.instIntuitionisticFormulaIntuitionistic = LO.System.Intuitionistic.mk
    Equations
    • LO.IntProp.Hilbert.instIncludeLEMClassical = { include_LEM := }
    Equations
    • LO.IntProp.Hilbert.instIncludeEFQClassical = { include_EFQ := }
    instance LO.IntProp.Hilbert.instIncludeEFQKC {α : Type u} :
    𝐊𝐂.IncludeEFQ
    Equations
    • LO.IntProp.Hilbert.instIncludeEFQKC = { include_EFQ := }
    Equations
    instance LO.IntProp.Hilbert.instIncludeEFQLC {α : Type u} :
    𝐋𝐂.IncludeEFQ
    Equations
    • LO.IntProp.Hilbert.instIncludeEFQLC = { include_EFQ := }
    Equations
    @[reducible, inline]
    Equations
    @[reducible, inline]
    Equations
    • LO.IntProp.Hilbert.WeakClassical = { axiomSet := 𝗣𝗲 }
    noncomputable def LO.IntProp.Deduction.rec! {α : Type u} {Λ : LO.IntProp.Hilbert α} {motive : (a : LO.IntProp.Formula α) → Λ ⊢! aSort u_1} (eaxm : {p : LO.IntProp.Formula α} → (a : p Ax(Λ)) → motive p ) (mdp : {p q : LO.IntProp.Formula α} → {hpq : Λ ⊢! p q} → {hp : Λ ⊢! p} → motive (p q) hpqmotive p hpmotive q ) (verum : motive ) (imply₁ : {p q : LO.IntProp.Formula α} → motive (p q p) ) (imply₂ : {p q r : LO.IntProp.Formula α} → motive ((p q r) (p q) p r) ) (and₁ : {p q : LO.IntProp.Formula α} → motive (p q p) ) (and₂ : {p q : LO.IntProp.Formula α} → motive (p q q) ) (and₃ : {p q : LO.IntProp.Formula α} → motive (p q p q) ) (or₁ : {p q : LO.IntProp.Formula α} → motive (p p q) ) (or₂ : {p q : LO.IntProp.Formula α} → motive (q p q) ) (or₃ : {p q r : LO.IntProp.Formula α} → motive ((p r) (q r) p q r) ) (neg_equiv : {p : LO.IntProp.Formula α} → motive (LO.Axioms.NegEquiv p) ) {a : LO.IntProp.Formula α} (t : Λ ⊢! a) :
    motive a t
    Equations
    • One or more equations did not get rendered due to their size.
    theorem LO.IntProp.weaker_than_of_subset_axiomset' {α : Type u} {Λ₁ : LO.IntProp.Hilbert α} {Λ₂ : LO.IntProp.Hilbert α} (hMaxm : ∀ {p : LO.IntProp.Formula α}, p Ax(Λ₁)Λ₂ ⊢! p) :
    Λ₁ ≤ₛ Λ₂
    theorem LO.IntProp.weaker_than_of_subset_axiomset {α : Type u} {Λ₁ : LO.IntProp.Hilbert α} {Λ₂ : LO.IntProp.Hilbert α} (hSubset : autoParam (Ax(Λ₁) Ax(Λ₂)) _auto✝) :
    Λ₁ ≤ₛ Λ₂