Documentation

Logic.Modal.Complemental

Equations
  • -x = match x with | p.imp LO.Modal.Formula.falsum => p | p => p
@[simp]
theorem LO.Modal.Formula.complement.imp_def₁ {α : Type u_1} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hq : q ) :
-(p q) = (p q)
theorem LO.Modal.Formula.complement.imp_def₂ {α : Type u_1} {p : LO.Modal.Formula α} {q : LO.Modal.Formula α} (hq : q = ) :
-(p q) = p
theorem LO.Modal.complement_derive_bot {α : Type u_1} {S : Type u_2} [DecidableEq α] [LO.System (LO.Modal.Formula α) S] {𝓢 : S} [LO.System.ModusPonens 𝓢] {p : LO.Modal.Formula α} (hp : 𝓢 ⊢! p) (hcp : 𝓢 ⊢! -p) :
𝓢 ⊢!
theorem LO.Modal.neg_complement_derive_bot {α : Type u_1} {S : Type u_2} [DecidableEq α] [LO.System (LO.Modal.Formula α) S] {𝓢 : S} [LO.System.ModusPonens 𝓢] {p : LO.Modal.Formula α} (hp : 𝓢 ⊢! p) (hcp : 𝓢 ⊢! -p) :
𝓢 ⊢!
Equations
theorem LO.Modal.Formulae.complementary_mem_box {α : Type u_1} [DecidableEq α] {P : LO.Modal.Formulae α} {p : LO.Modal.Formula α} (hi : autoParam (∀ {q r : LO.Modal.Formula α}, q r Pq P) _auto✝) :
p Pp P
Instances
    theorem LO.Modal.Formulae.ComplementaryClosed.subset {α : Type u_1} [DecidableEq α] {P : LO.Modal.Formulae α} {S : LO.Modal.Formulae α} [self : P.ComplementaryClosed S] :
    P S
    theorem LO.Modal.Formulae.ComplementaryClosed.either {α : Type u_1} [DecidableEq α] {P : LO.Modal.Formulae α} {S : LO.Modal.Formulae α} [self : P.ComplementaryClosed S] (p : LO.Modal.Formula α) :
    p Sp P -p P
    Equations
    • P.SubformulaeComplementaryClosed p = P.ComplementaryClosed (𝒮 p)
    theorem LO.Modal.Formulae.intro_union_consistent {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {P₁ : LO.Modal.Formulae α} {P₂ : LO.Modal.Formulae α} (h : ∀ {Γ₁ Γ₂ : List (LO.Modal.Formula α)}, ((pΓ₁, p P₁) pΓ₂, p P₂)Λ Γ₁ Γ₂ ) :
    theorem LO.Modal.Formulae.intro_triunion_consistent {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {P₁ : LO.Modal.Formulae α} {P₂ : LO.Modal.Formulae α} {P₃ : LO.Modal.Formulae α} (h : ∀ {Γ₁ Γ₂ Γ₃ : List (LO.Modal.Formula α)}, ((pΓ₁, p P₁) (pΓ₂, p P₂) pΓ₃, p P₃)Λ Γ₁ Γ₂ Γ₃ ) :
    Equations
    theorem LO.Modal.Formulae.exists_consistent_complementary_closed {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {P : LO.Modal.Formulae α} (S : LO.Modal.Formulae α) (h_sub : P S) (P_consis : LO.Modal.Formulae.Consistent Λ P) :
    ∃ (P' : LO.Modal.Formulae α), P P' LO.Modal.Formulae.Consistent Λ P' P'.ComplementaryClosed S
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.lindenbaum {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} (S : LO.Modal.Formulae α) {X : LO.Modal.Formulae α} (X_sub : X S) (X_consis : LO.Modal.Formulae.Consistent Λ X) :
    ∃ (X' : LO.Modal.CCF Λ S), X X'.formulae
    Equations
    • LO.Modal.ComplementaryClosedConsistentFormulae.instInhabitedCCFOfConsistentFormulaHilbert = { default := .choose }
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_compl_of_not_mem {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF Λ S} {q : LO.Modal.Formula α} (hs : q S) :
    qX.formulae-q X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.mem_of_not_mem_compl {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF Λ S} {q : LO.Modal.Formula α} (hs : q S) :
    -qX.formulaeq X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.membership_iff {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF Λ S} {q : LO.Modal.Formula α} (hq_sub : q S) :
    q X.formulae X.formulae *⊢[Λ]! q
    @[simp]
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_compl {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF Λ S} {q : LO.Modal.Formula α} (hq_sub : q S) :
    q X.formulae -qX.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_mem_imp {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF Λ S} {q : LO.Modal.Formula α} {r : LO.Modal.Formula α} (hsub_qr : q r S) (hsub_q : autoParam (q S) _auto✝) (hsub_r : autoParam (r S) _auto✝) :
    q r X.formulae q X.formulae-rX.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.iff_not_mem_imp {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X : LO.Modal.CCF Λ S} {q : LO.Modal.Formula α} {r : LO.Modal.Formula α} (hsub_qr : q r S) (hsub_q : autoParam (q S) _auto✝) (hsub_r : autoParam (r S) _auto✝) :
    q rX.formulae q X.formulae -r X.formulae
    theorem LO.Modal.ComplementaryClosedConsistentFormulae.equality_def {α : Type u_1} [DecidableEq α] {Λ : LO.Modal.Hilbert α} {S : LO.Modal.Formulae α} {X₁ : LO.Modal.CCF Λ S} {X₂ : LO.Modal.CCF Λ S} :
    X₁ = X₂ X₁.formulae = X₂.formulae