Documentation

Logic.Modal.Geach

structure GeachTaple :
Instances For
    def GeachConfluent {ฮฑ : Type u_1} (t : GeachTaple) (R : Rel ฮฑ ฮฑ) :
    Equations
    • GeachConfluent t R = โˆ€ {x y z : ฮฑ}, R.iterate t.i x y โˆง R.iterate t.j x z โ†’ โˆƒ (u : ฮฑ), R.iterate t.m y u โˆง R.iterate t.n z u
    Instances For
      theorem GeachConfluent.serial_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Serial R โ†” GeachConfluent { i := 0, j := 0, m := 1, n := 1 } R
      theorem GeachConfluent.reflexive_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Reflexive R โ†” GeachConfluent { i := 0, j := 0, m := 1, n := 0 } R
      theorem GeachConfluent.symmetric_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Symmetric R โ†” GeachConfluent { i := 0, j := 1, m := 0, n := 1 } R
      theorem GeachConfluent.transitive_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Transitive R โ†” GeachConfluent { i := 0, j := 2, m := 1, n := 0 } R
      theorem GeachConfluent.euclidean_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Euclidean R โ†” GeachConfluent { i := 1, j := 1, m := 0, n := 1 } R
      theorem GeachConfluent.confluent_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Confluent R โ†” GeachConfluent { i := 1, j := 1, m := 1, n := 1 } R
      theorem GeachConfluent.extensive_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Extensive R โ†” GeachConfluent { i := 0, j := 1, m := 0, n := 0 } R
      theorem GeachConfluent.functional_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Functional R โ†” GeachConfluent { i := 1, j := 1, m := 0, n := 0 } R
      theorem GeachConfluent.dense_def {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ} :
      Dense R โ†” GeachConfluent { i := 0, j := 1, m := 2, n := 0 } R
      @[simp]
      theorem GeachConfluent.satisfies_eq {ฮฑ : Type u_1} {t : GeachTaple} :
      GeachConfluent t fun (x x_1 : ฮฑ) => x = x_1
      def MultiGeachConfluent {ฮฑ : Type u_1} (ts : List GeachTaple) (R : Rel ฮฑ ฮฑ) :
      Equations
      Instances For
        @[simp]
        theorem MultiGeachConfluent.iff_nil :
        โˆ€ {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ}, MultiGeachConfluent [] R
        @[simp]
        theorem MultiGeachConfluent.iff_singleton {t : GeachTaple} :
        โˆ€ {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ}, MultiGeachConfluent [t] R โ†” GeachConfluent t R
        theorem MultiGeachConfluent.iff_cons {ts : List GeachTaple} {t : GeachTaple} :
        โˆ€ {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ}, ts โ‰  [] โ†’ (MultiGeachConfluent (t :: ts) R โ†” GeachConfluent t R โˆง MultiGeachConfluent ts R)
        @[simp]
        theorem MultiGeachConfluent.satisfies_eq {ฮฑ : Type u_1} {ts : List GeachTaple} :
        MultiGeachConfluent ts fun (x x_1 : ฮฑ) => x = x_1
        @[reducible, inline]
        Equations
        Instances For
          @[reducible, inline]
          Equations
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • LO.Axioms.instIsGeachSet = { taple := { i := 0, j := 0, m := 1, n := 0 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_1 = { taple := { i := 0, j := 1, m := 0, n := 1 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_2 = { taple := { i := 0, j := 0, m := 1, n := 1 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_3 = { taple := { i := 0, j := 2, m := 1, n := 0 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_4 = { taple := { i := 1, j := 1, m := 0, n := 1 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_5 = { taple := { i := 1, j := 1, m := 1, n := 1 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_6 = { taple := { i := 0, j := 1, m := 2, n := 0 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_7 = { taple := { i := 1, j := 1, m := 0, n := 0 }, char := โ‹ฏ }
              Equations
              • LO.Axioms.instIsGeachSet_8 = { taple := { i := 0, j := 1, m := 0, n := 0 }, char := โ‹ฏ }
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[reducible, inline]
                abbrev LO.Modal.Geach {ฮฑ : Type u_1} (l : List GeachTaple) :
                Equations
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    class LO.Modal.Hilbert.IsGeach {ฮฑ : Type u_1} (L : LO.Modal.Hilbert ฮฑ) (ts : List GeachTaple) :
                    Instances
                      @[simp]
                      theorem LO.Modal.Hilbert.IsGeach.char {ฮฑ : Type u_1} {L : LO.Modal.Hilbert ฮฑ} {ts : List GeachTaple} [self : L.IsGeach ts] :
                      theorem LO.Modal.IsGeach.ax {ฮฑ : Type u_1} {ts : List GeachTaple} {ฮ› : LO.Modal.Hilbert ฮฑ} [geach : ฮ›.IsGeach ts] :
                      instance LO.Modal.IsGeach.instIsGeachKNilGeachTaple {ฮฑ : Type u_1} :
                      ๐Š.IsGeach []
                      Equations
                      • LO.Modal.IsGeach.instIsGeachKNilGeachTaple = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachKDConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐Š๐ƒ.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachKDConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachKTConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐Š๐“.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachKTConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachKTBConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐Š๐“๐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachKTBConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachK4ConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐Š๐Ÿ’.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachK4ConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachS4ConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐’๐Ÿ’.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachS4ConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachS4Dot2ConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐’๐Ÿ’.๐Ÿ.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 1, n := 1 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachS4Dot2ConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachS5ConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐’๐Ÿ“.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachS5ConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachKT4BConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐Š๐“๐Ÿ’๐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachKT4BConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }
                      instance LO.Modal.IsGeach.instIsGeachTrivConsGeachTapleMkOfNatNatNil {ฮฑ : Type u_1} :
                      ๐“๐ซ๐ข๐ฏ.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 0 }]
                      Equations
                      • LO.Modal.IsGeach.instIsGeachTrivConsGeachTapleMkOfNatNatNil = { char := โ‹ฏ }