Documentation

Logic.Modal.Geach

structure GeachTaple :
def GeachConfluent {α : Type u_1} (t : GeachTaple) (R : Rel α α) :
Equations
  • GeachConfluent t R = ∀ {x y z : α}, R.iterate t.i x y R.iterate t.j x z∃ (u : α), R.iterate t.m y u R.iterate t.n z u
theorem GeachConfluent.serial_def {α : Type u_1} {R : Rel α α} :
Serial R GeachConfluent { i := 0, j := 0, m := 1, n := 1 } R
theorem GeachConfluent.reflexive_def {α : Type u_1} {R : Rel α α} :
Reflexive R GeachConfluent { i := 0, j := 0, m := 1, n := 0 } R
theorem GeachConfluent.symmetric_def {α : Type u_1} {R : Rel α α} :
Symmetric R GeachConfluent { i := 0, j := 1, m := 0, n := 1 } R
theorem GeachConfluent.transitive_def {α : Type u_1} {R : Rel α α} :
Transitive R GeachConfluent { i := 0, j := 2, m := 1, n := 0 } R
theorem GeachConfluent.euclidean_def {α : Type u_1} {R : Rel α α} :
Euclidean R GeachConfluent { i := 1, j := 1, m := 0, n := 1 } R
theorem GeachConfluent.confluent_def {α : Type u_1} {R : Rel α α} :
Confluent R GeachConfluent { i := 1, j := 1, m := 1, n := 1 } R
theorem GeachConfluent.extensive_def {α : Type u_1} {R : Rel α α} :
Extensive R GeachConfluent { i := 0, j := 1, m := 0, n := 0 } R
theorem GeachConfluent.functional_def {α : Type u_1} {R : Rel α α} :
Functional R GeachConfluent { i := 1, j := 1, m := 0, n := 0 } R
theorem GeachConfluent.dense_def {α : Type u_1} {R : Rel α α} :
Dense R GeachConfluent { i := 0, j := 1, m := 2, n := 0 } R
@[simp]
theorem GeachConfluent.satisfies_eq {α : Type u_1} {t : GeachTaple} :
GeachConfluent t fun (x x_1 : α) => x = x_1
@[simp]
theorem MultiGeachConfluent.iff_nil :
∀ {α : Type u_1} {R : Rel α α}, MultiGeachConfluent [] R
@[simp]
theorem MultiGeachConfluent.iff_singleton {t : GeachTaple} :
∀ {α : Type u_1} {R : Rel α α}, MultiGeachConfluent [t] R GeachConfluent t R
theorem MultiGeachConfluent.iff_cons {ts : List GeachTaple} {t : GeachTaple} :
∀ {α : Type u_1} {R : Rel α α}, ts [](MultiGeachConfluent (t :: ts) R GeachConfluent t R MultiGeachConfluent ts R)
@[simp]
theorem MultiGeachConfluent.satisfies_eq {α : Type u_1} {ts : List GeachTaple} :
MultiGeachConfluent ts fun (x x_1 : α) => x = x_1
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.Axioms.Geach.T_def {F : Type u_1} [LO.LogicalConnective F] [LO.BasicModalLogicalConnective F] :
𝗴𝗲({ i := 0, j := 0, m := 1, n := 0 }) = 𝗧
theorem LO.Axioms.Geach.B_def {F : Type u_1} [LO.LogicalConnective F] [LO.BasicModalLogicalConnective F] :
𝗴𝗲({ i := 0, j := 1, m := 0, n := 1 }) = 𝗕
theorem LO.Axioms.Geach.D_def {F : Type u_1} [LO.LogicalConnective F] [LO.BasicModalLogicalConnective F] :
𝗴𝗲({ i := 0, j := 0, m := 1, n := 1 }) = 𝗗
theorem LO.Axioms.Geach.Four_def {F : Type u_1} [LO.LogicalConnective F] [LO.BasicModalLogicalConnective F] :
𝗴𝗲({ i := 0, j := 2, m := 1, n := 0 }) = 𝟰
theorem LO.Axioms.Geach.Five_def {F : Type u_1} [LO.LogicalConnective F] [LO.BasicModalLogicalConnective F] :
𝗴𝗲({ i := 1, j := 1, m := 0, n := 1 }) = 𝟱
theorem LO.Axioms.Geach.Dot2_def {F : Type u_1} [LO.LogicalConnective F] [LO.BasicModalLogicalConnective F] :
𝗴𝗲({ i := 1, j := 1, m := 1, n := 1 }) = .𝟮
Equations
  • LO.Axioms.instIsGeachSet = { taple := { i := 0, j := 0, m := 1, n := 0 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_1 = { taple := { i := 0, j := 1, m := 0, n := 1 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_2 = { taple := { i := 0, j := 0, m := 1, n := 1 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_3 = { taple := { i := 0, j := 2, m := 1, n := 0 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_4 = { taple := { i := 1, j := 1, m := 0, n := 1 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_5 = { taple := { i := 1, j := 1, m := 1, n := 1 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_6 = { taple := { i := 0, j := 1, m := 2, n := 0 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_7 = { taple := { i := 1, j := 1, m := 0, n := 0 }, char := }
Equations
  • LO.Axioms.instIsGeachSet_8 = { taple := { i := 0, j := 1, m := 0, n := 0 }, char := }
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.Modal.Hilbert.IsGeach.char {α : Type u_1} {L : LO.Modal.Hilbert α} {ts : List GeachTaple} [self : L.IsGeach ts] :
theorem LO.Modal.IsGeach.ax {α : Type u_1} {ts : List GeachTaple} {Λ : LO.Modal.Hilbert α} [geach : Λ.IsGeach ts] :
instance LO.Modal.IsGeach.instIsGeachKNilGeachTaple {α : Type u_1} :
𝐊.IsGeach []
Equations
  • LO.Modal.IsGeach.instIsGeachKNilGeachTaple = { char := }
instance LO.Modal.IsGeach.instIsGeachKDConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐊𝐃.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
Equations
  • LO.Modal.IsGeach.instIsGeachKDConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachKTConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐊𝐓.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }]
Equations
  • LO.Modal.IsGeach.instIsGeachKTConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachKTBConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐊𝐓𝐁.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
Equations
  • LO.Modal.IsGeach.instIsGeachKTBConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachK4ConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐊𝟒.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }]
Equations
  • LO.Modal.IsGeach.instIsGeachK4ConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachS4ConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐒𝟒.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
Equations
  • LO.Modal.IsGeach.instIsGeachS4ConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachS4Dot2ConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐒𝟒.𝟐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 1, n := 1 }]
Equations
  • LO.Modal.IsGeach.instIsGeachS4Dot2ConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachS5ConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐒𝟓.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
Equations
  • LO.Modal.IsGeach.instIsGeachS5ConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachKT4BConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐊𝐓𝟒𝐁.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
Equations
  • LO.Modal.IsGeach.instIsGeachKT4BConsGeachTapleMkOfNatNatNil = { char := }
instance LO.Modal.IsGeach.instIsGeachTrivConsGeachTapleMkOfNatNatNil {α : Type u_1} :
𝐓𝐫𝐢𝐯.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 0 }]
Equations
  • LO.Modal.IsGeach.instIsGeachTrivConsGeachTapleMkOfNatNatNil = { char := }