Equations
- GeachConfluent t R = โ {x y z : ฮฑ}, R.iterate t.i x y โง R.iterate t.j x z โ โ (u : ฮฑ), R.iterate t.m y u โง R.iterate t.n z u
Instances For
theorem
GeachConfluent.serial_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Serial R โ GeachConfluent { i := 0, j := 0, m := 1, n := 1 } R
theorem
GeachConfluent.reflexive_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Reflexive R โ GeachConfluent { i := 0, j := 0, m := 1, n := 0 } R
theorem
GeachConfluent.symmetric_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Symmetric R โ GeachConfluent { i := 0, j := 1, m := 0, n := 1 } R
theorem
GeachConfluent.transitive_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Transitive R โ GeachConfluent { i := 0, j := 2, m := 1, n := 0 } R
theorem
GeachConfluent.euclidean_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Euclidean R โ GeachConfluent { i := 1, j := 1, m := 0, n := 1 } R
theorem
GeachConfluent.confluent_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Confluent R โ GeachConfluent { i := 1, j := 1, m := 1, n := 1 } R
theorem
GeachConfluent.extensive_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Extensive R โ GeachConfluent { i := 0, j := 1, m := 0, n := 0 } R
theorem
GeachConfluent.functional_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Functional R โ GeachConfluent { i := 1, j := 1, m := 0, n := 0 } R
theorem
GeachConfluent.dense_def
{ฮฑ : Type u_1}
{R : Rel ฮฑ ฮฑ}
:
Dense R โ GeachConfluent { i := 0, j := 1, m := 2, n := 0 } R
@[simp]
theorem
GeachConfluent.satisfies_eq
{ฮฑ : Type u_1}
{t : GeachTaple}
:
GeachConfluent t fun (x x_1 : ฮฑ) => x = x_1
Equations
- MultiGeachConfluent [] R = True
- MultiGeachConfluent [t] R = GeachConfluent t R
- MultiGeachConfluent (t :: ts_2) R = (GeachConfluent t R โง MultiGeachConfluent ts_2 R)
Instances For
@[simp]
@[simp]
theorem
MultiGeachConfluent.iff_singleton
{t : GeachTaple}
:
โ {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ}, MultiGeachConfluent [t] R โ GeachConfluent t R
theorem
MultiGeachConfluent.iff_cons
{ts : List GeachTaple}
{t : GeachTaple}
:
โ {ฮฑ : Type u_1} {R : Rel ฮฑ ฮฑ},
ts โ [] โ (MultiGeachConfluent (t :: ts) R โ GeachConfluent t R โง MultiGeachConfluent ts R)
@[simp]
theorem
MultiGeachConfluent.satisfies_eq
{ฮฑ : Type u_1}
{ts : List GeachTaple}
:
MultiGeachConfluent ts fun (x x_1 : ฮฑ) => x = x_1
@[reducible, inline]
abbrev
LO.Axioms.Geach
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
(t : GeachTaple)
(p : F)
:
F
Instances For
@[reducible, inline]
abbrev
LO.Axioms.Geach.set
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
(t : GeachTaple)
:
Set F
Equations
- ๐ด๐ฒ(t) = {x : F | โ (p : F), LO.Axioms.Geach t p = x}
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Axioms.Geach.T_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.B_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.D_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.Four_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.Five_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.Dot2_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.C4_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.CD_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
theorem
LO.Axioms.Geach.Tc_def
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
class
LO.Axioms.IsGeach
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
(Ax : Set F)
:
- taple : GeachTaple
- char : Ax = ๐ด๐ฒ(LO.Axioms.IsGeach.taple Ax)
Instances
theorem
LO.Axioms.IsGeach.char
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
{Ax : Set F}
[self : LO.Axioms.IsGeach Ax]
:
instance
LO.Axioms.instIsGeachSet
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet = { taple := { i := 0, j := 0, m := 1, n := 0 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_1
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_1 = { taple := { i := 0, j := 1, m := 0, n := 1 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_2
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_2 = { taple := { i := 0, j := 0, m := 1, n := 1 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_3
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_3 = { taple := { i := 0, j := 2, m := 1, n := 0 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_4
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_4 = { taple := { i := 1, j := 1, m := 0, n := 1 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_5
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_5 = { taple := { i := 1, j := 1, m := 1, n := 1 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_6
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_6 = { taple := { i := 0, j := 1, m := 2, n := 0 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_7
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_7 = { taple := { i := 1, j := 1, m := 0, n := 0 }, char := โฏ }
instance
LO.Axioms.instIsGeachSet_8
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
Equations
- LO.Axioms.instIsGeachSet_8 = { taple := { i := 0, j := 1, m := 0, n := 0 }, char := โฏ }
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.Axioms.MultiGeach.def_nil
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
:
@[simp]
theorem
LO.Axioms.MultiGeach.iff_cons
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
{x : GeachTaple}
{l : List GeachTaple}
:
theorem
LO.Axioms.MultiGeach.mem
{F : Type u_1}
[LO.LogicalConnective F]
[LO.BasicModalLogicalConnective F]
{x : GeachTaple}
{l : List GeachTaple}
(h : x โ l)
:
@[reducible, inline]
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Instances
@[simp]
theorem
LO.Modal.Hilbert.IsGeach.char
{ฮฑ : Type u_1}
{L : LO.Modal.Hilbert ฮฑ}
{ts : List GeachTaple}
[self : L.IsGeach ts]
:
theorem
LO.Modal.IsGeach.ax
{ฮฑ : Type u_1}
{ts : List GeachTaple}
{ฮ : LO.Modal.Hilbert ฮฑ}
[geach : ฮ.IsGeach ts]
:
Equations
- LO.Modal.IsGeach.instIsGeachKNilGeachTaple = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachKDConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
Equations
- LO.Modal.IsGeach.instIsGeachKDConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachKTConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }]
Equations
- LO.Modal.IsGeach.instIsGeachKTConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachKTBConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐๐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
Equations
- LO.Modal.IsGeach.instIsGeachKTBConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachK4ConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }]
Equations
- LO.Modal.IsGeach.instIsGeachK4ConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachS4ConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
Equations
- LO.Modal.IsGeach.instIsGeachS4ConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachS4Dot2ConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐.๐.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 1, j := 1, m := 1, n := 1 }]
Equations
- LO.Modal.IsGeach.instIsGeachS4Dot2ConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachS5ConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
Equations
- LO.Modal.IsGeach.instIsGeachS5ConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachKT4BConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐๐๐.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
Equations
- LO.Modal.IsGeach.instIsGeachKT4BConsGeachTapleMkOfNatNatNil = { char := โฏ }
instance
LO.Modal.IsGeach.instIsGeachTrivConsGeachTapleMkOfNatNatNil
{ฮฑ : Type u_1}
:
๐๐ซ๐ข๐ฏ.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 0 }]
Equations
- LO.Modal.IsGeach.instIsGeachTrivConsGeachTapleMkOfNatNatNil = { char := โฏ }