@[reducible, inline]
Equations
- LO.Kripke.GeachConfluentFrameClass t = {F : LO.Kripke.Frame | GeachConfluent t F.Rel}
Instances For
@[reducible, inline]
Equations
- LO.Kripke.MultiGeachConfluentFrameClass ts = {F : LO.Kripke.Frame | MultiGeachConfluent ts F.Rel}
Instances For
theorem
LO.Kripke.MultiGeachConfluentFrameClass.def_cons
{t : GeachTaple}
{ts : List GeachTaple}
(ts_nil : ts ≠ [])
:
@[reducible, inline]
Equations
- 𝔽.IsGeach ts = 𝔽.DefinedBy (LO.Kripke.MultiGeachConfluentFrameClass ts)
Instances For
theorem
LO.Kripke.FrameClass.IsGeach.equality
{ts : List GeachTaple}
{𝔽 : LO.Kripke.FrameClass}
[geach : 𝔽.IsGeach ts]
:
instance
LO.Kripke.ReflexiveFrameClass.isGeach :
LO.Kripke.ReflexiveFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }]
Equations
instance
LO.Kripke.instIsGeachSerialFrameClassConsGeachTapleMkOfNatNatNil :
LO.Kripke.SerialFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 1 }]
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Kripke.TransitiveFrameClass.isGeach :
LO.Kripke.TransitiveFrameClass.IsGeach [{ i := 0, j := 2, m := 1, n := 0 }]
Equations
instance
LO.Kripke.instIsGeachReflexiveEuclideanFrameClassConsGeachTapleMkOfNatNatNil :
LO.Kripke.ReflexiveEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Kripke.instIsGeachReflexiveSymmetricFrameClassConsGeachTapleMkOfNatNatNil :
LO.Kripke.ReflexiveSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Kripke.instIsGeachPreorderFrameClassConsGeachTapleMkOfNatNatNil :
LO.Kripke.PreorderFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
Equations
- One or more equations did not get rendered due to their size.
instance
LO.Kripke.instIsGeachEquivalenceFrameClassConsGeachTapleMkOfNatNatNil :
LO.Kripke.EquivalenceFrameClass.IsGeach
[{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Modal.Kripke.axiomGeach_defines
{α : Type u}
[Inhabited α]
{t : GeachTaple}
{F : LO.Kripke.Frame}
:
instance
LO.Modal.Kripke.axiomGeach_definability
{α : Type u}
[Inhabited α]
{t : GeachTaple}
:
𝔽(𝗴𝗲(t)).DefinedBy (LO.Kripke.GeachConfluentFrameClass t)
Equations
- LO.Modal.Kripke.axiomGeach_definability = { define := ⋯, nonempty := ⋯ }
instance
LO.Modal.Kripke.axiomT_defines
{α : Type u}
[Inhabited α]
:
𝔽(𝗧).DefinedBy LO.Kripke.ReflexiveFrameClass
Equations
- LO.Modal.Kripke.axiomT_defines = ⋯.mpr LO.Modal.Kripke.axiomGeach_definability
instance
LO.Modal.Kripke.axiomFour_defines
{α : Type u}
[Inhabited α]
:
𝔽(𝟰).DefinedBy LO.Kripke.TransitiveFrameClass
Equations
- LO.Modal.Kripke.axiomFour_defines = ⋯.mpr LO.Modal.Kripke.axiomGeach_definability
theorem
LO.Modal.Kripke.axiomMultiGeach_defines
{α : Type u}
[Inhabited α]
{ts : List GeachTaple}
{F : LO.Kripke.Frame}
:
instance
LO.Modal.Kripke.axiomMultiGeach_definability
{α : Type u}
[Inhabited α]
{ts : List GeachTaple}
:
𝔽(𝗚𝗲(ts)).DefinedBy (LO.Kripke.MultiGeachConfluentFrameClass ts)
Equations
- LO.Modal.Kripke.axiomMultiGeach_definability = { define := ⋯, nonempty := ⋯ }
Equations
- LO.Modal.Kripke.Geach_definability = inferInstance
Equations
- ⋯ = ⋯
instance
LO.Modal.Kripke.instConsistentFormulaHilbertGeach
{α : Type u}
[Inhabited α]
{ts : List GeachTaple}
:
Equations
- ⋯ = ⋯
instance
LO.Modal.Kripke.instGeachLogicSound
{α : Type u}
[Inhabited α]
{ts : List GeachTaple}
{Λ : LO.Modal.Hilbert α}
{𝔽 : LO.Kripke.FrameClass}
[logic_geach : Λ.IsGeach ts]
[class_geach : 𝔽.IsGeach ts]
:
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
@[deprecated]
theorem
LO.Modal.Kripke.S4_sound_aux
{α : Type u}
[Inhabited α]
{p : LO.Modal.Formula α}
:
𝐒𝟒 ⊢! p → LO.Kripke.PreorderFrameClass#α ⊧ p
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
theorem
LO.Modal.Kripke.geachConfluent_CanonicalFrame
{α : Type u}
[DecidableEq α]
{Ax : LO.Modal.Theory α}
[LO.System.Consistent 𝝂Ax]
{t : GeachTaple}
(h : 𝗴𝗲(t) ⊆ Ax)
:
GeachConfluent t (LO.Modal.Kripke.CanonicalFrame 𝝂Ax).Rel
theorem
LO.Modal.Kripke.multiGeachConfluent_CanonicalFrame
{α : Type u}
[DecidableEq α]
{Ax : LO.Modal.Theory α}
[LO.System.Consistent 𝝂Ax]
{ts : List GeachTaple}
(h : 𝗚𝗲(ts) ⊆ Ax)
:
MultiGeachConfluent ts (LO.Modal.Kripke.CanonicalFrame 𝝂Ax).Rel
instance
LO.Modal.Kripke.instMultiGeachComplete
{α : Type u}
[Inhabited α]
[DecidableEq α]
{ts : List GeachTaple}
:
Equations
- ⋯ = ⋯
instance
LO.Modal.Kripke.instCompleteHilbertFormulaDepAltOfIsGeachOfIsGeach
{α : Type u}
[Inhabited α]
[DecidableEq α]
{ts : List GeachTaple}
{Λ : LO.Modal.Hilbert α}
{𝔽 : LO.Kripke.FrameClass}
[logic_geach : Λ.IsGeach ts]
[class_geach : 𝔽.IsGeach ts]
:
LO.Complete Λ 𝔽#α
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯