Documentation

Logic.Modal.Kripke.Completeness

@[reducible, inline]
Equations
@[simp]
theorem LO.Modal.Kripke.CanonicalFrame.rel_def_box {α : Type u} {Λ : LO.Modal.Hilbert α} [Nonempty (LO.Modal.MCT Λ)] {Ω₁ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {Ω₂ : (LO.Modal.Kripke.CanonicalFrame Λ).World} :
Ω₁ Ω₂ ∀ {p : LO.Modal.Formula α}, p Ω₁.theoryp Ω₂.theory
theorem LO.Modal.Kripke.CanonicalFrame.multirel_def_multibox {α : Type u} [DecidableEq α] {Λ : LO.Modal.Hilbert α} [Λ.IsNormal] [Nonempty (LO.Modal.MCT Λ)] {Ω₁ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {Ω₂ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {n : } :
Ω₁ ≺^[n] Ω₂ ∀ {p : LO.Modal.Formula α}, □^[n]p Ω₁.theoryp Ω₂.theory
theorem LO.Modal.Kripke.CanonicalFrame.multirel_def_multibox' {α : Type u} [DecidableEq α] {Λ : LO.Modal.Hilbert α} [Λ.IsNormal] [Nonempty (LO.Modal.MCT Λ)] {Ω₁ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {Ω₂ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {n : } :
Ω₁ ≺^[n] Ω₂ ∀ {p : LO.Modal.Formula α}, p □''⁻¹^[n]Ω₁.theoryp Ω₂.theory
theorem LO.Modal.Kripke.CanonicalFrame.multirel_def_multidia {α : Type u} [DecidableEq α] {Λ : LO.Modal.Hilbert α} [Λ.IsNormal] [Nonempty (LO.Modal.MCT Λ)] {Ω₁ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {Ω₂ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {n : } :
Ω₁ ≺^[n] Ω₂ ∀ {p : LO.Modal.Formula α}, p Ω₂.theory◇^[n]p Ω₁.theory
theorem LO.Modal.Kripke.CanonicalFrame.rel_def_dia {α : Type u} [DecidableEq α] {Λ : LO.Modal.Hilbert α} [Λ.IsNormal] [Nonempty (LO.Modal.MCT Λ)] {Ω₁ : (LO.Modal.Kripke.CanonicalFrame Λ).World} {Ω₂ : (LO.Modal.Kripke.CanonicalFrame Λ).World} :
Ω₁ Ω₂ ∀ {p : LO.Modal.Formula α}, p Ω₂.theoryp Ω₁.theory
@[reducible, inline]
Equations
@[reducible]
Equations
  • LO.Modal.Kripke.CanonicalModel.instSemanticsFormulaWorld = LO.Modal.Formula.Kripke.Satisfies.semantics
theorem LO.Modal.Kripke.truthlemma {α : Type u} [DecidableEq α] {Λ : LO.Modal.Hilbert α} [Λ.IsNormal] [Nonempty (LO.Modal.MCT Λ)] {p : LO.Modal.Formula α} {Ω : (LO.Modal.Kripke.CanonicalModel Λ).World} :
Ω p p Ω.theory
Equations
  • =