Documentation

Logic.Modal.Kripke.Filteration

def LO.Modal.Kripke.filterEquiv {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] (x : M.World) (y : M.World) :
Equations
Instances For
    def LO.Modal.Kripke.FilterEqvSetoid {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
    Setoid M.World
    Equations
    Instances For
      @[reducible, inline]
      abbrev LO.Modal.Kripke.FilterEqvQuotient {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
      Type u_1
      Equations
      Instances For
        Equations
        • =
        class LO.Modal.Kripke.FilterOf {α : Type u} (FM : LO.Kripke.Model α) (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
        Instances
          @[simp]
          theorem LO.Modal.Kripke.FilterOf.def_world {α : Type u} {FM : LO.Kripke.Model α} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] [self : LO.Modal.Kripke.FilterOf FM M T] :
          theorem LO.Modal.Kripke.FilterOf.def_rel₁ {α : Type u} {FM : LO.Kripke.Model α} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] [self : LO.Modal.Kripke.FilterOf FM M T] {x : M.Frame.World} {y : M.Frame.World} :
          x ycast x cast y
          theorem LO.Modal.Kripke.FilterOf.def_box {α : Type u} {FM : LO.Kripke.Model α} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] [self : LO.Modal.Kripke.FilterOf FM M T] {Qx : FM.World} {Qy : FM.World} :
          Qx QyQuotient.lift₂ (fun (x y : M.World) => ∀ (p : LO.Modal.Formula α), p Tx py p) (cast Qx) (cast Qy)
          theorem LO.Modal.Kripke.FilterOf.def_valuation {α : Type u} {FM : LO.Kripke.Model α} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] [self : LO.Modal.Kripke.FilterOf FM M T] (Qx : FM.Frame.World) (a : α) (ha : autoParam (LO.Modal.Formula.atom a T) _auto✝) :
          FM.Valuation Qx a Quotient.lift (fun (x : M.Frame.World) => M.Valuation x a) (cast Qx)
          @[reducible, inline]
          abbrev LO.Modal.Kripke.StandardFilterationValuation {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] (Qx : LO.Modal.Kripke.FilterEqvQuotient M T) (a : α) :
          Equations
          Instances For
            @[reducible, inline]
            abbrev LO.Modal.Kripke.FinestFilterationFrame {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[reducible, inline]
              abbrev LO.Modal.Kripke.FinestFilterationModel {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
              Equations
              Instances For
                Equations
                • LO.Modal.Kripke.FinestFilterationModel.filterOf = { def_world := , def_rel₁ := , def_box := , def_valuation := }
                @[reducible, inline]
                abbrev LO.Modal.Kripke.CoarsestFilterationFrame {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[reducible, inline]
                  abbrev LO.Modal.Kripke.CoarsestFilterationModel {α : Type u} (M : LO.Kripke.Model α) (T : LO.Modal.Theory α) [T.SubformulaClosed] :
                  Equations
                  Instances For
                    Equations
                    • LO.Modal.Kripke.CoarsestFilterationModel.filterOf = { def_world := , def_rel₁ := , def_box := , def_valuation := }
                    theorem LO.Modal.Kripke.reflexive_filteration_model {α : Type u} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] {FM : LO.Kripke.Model α} (h_filter : LO.Modal.Kripke.FilterOf FM M T) (hRefl : Reflexive M.Frame.Rel) :
                    Reflexive FM.Frame.Rel
                    theorem LO.Modal.Kripke.serial_filteration_model {α : Type u} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] {FM : LO.Kripke.Model α} (h_filter : LO.Modal.Kripke.FilterOf FM M T) (hSerial : Serial M.Frame.Rel) :
                    Serial FM.Frame.Rel
                    theorem LO.Modal.Kripke.symmetric_finest_filteration_model {α : Type u} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] (hSymm : Symmetric M.Frame.Rel) :
                    theorem LO.Modal.Kripke.filteration {α : Type u} {M : LO.Kripke.Model α} {T : LO.Modal.Theory α} [T.SubformulaClosed] (FM : LO.Kripke.Model α) (filterOf : LO.Modal.Kripke.FilterOf FM M T) {x : M.World} {p : LO.Modal.Formula α} (hs : autoParam (p T) _auto✝) :
                    x p cast x p
                    Equations
                    • LO.Modal.Kripke.instFiniteFramePropertyKAllFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk
                    Equations
                    • LO.Modal.Kripke.instFiniteFramePropertyKTBReflexiveSymmetricFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk
                    Equations
                    Equations
                    • LO.Modal.Kripke.instFiniteFramePropertyS4PreorderFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk
                    Equations
                    • LO.Modal.Kripke.instFiniteFramePropertyKT4BEquivalenceFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk