Documentation

Mathlib.Algebra.Field.Defs

Division (semi)rings and (semi)fields #

This file introduces fields and division rings (also known as skewfields) and proves some basic statements about them. For a more extensive theory of fields, see the FieldTheory folder.

Main definitions #

Implementation details #

By convention 0⁻¹ = 0 in a field or division ring. This is due to the fact that working with total functions has the advantage of not constantly having to check that x ≠ 0 when writing x⁻¹. With this convention in place, some statements like (a + b) * c⁻¹ = a * c⁻¹ + b * c⁻¹ still remain true, while others like the defining property a * a⁻¹ = 1 need the assumption a ≠ 0. If you are a beginner in using Lean and are confused by that, you can read more about why this convention is taken in Kevin Buzzard's blogpost

A division ring or field is an example of a GroupWithZero. If you cannot find a division ring / field lemma that does not involve +, you can try looking for a GroupWithZero lemma instead.

Tags #

field, division ring, skew field, skew-field, skewfield

def NNRat.castRec {K : Type u_3} [NatCast K] [Div K] (q : ℚ≥0) :
K

The default definition of the coercion ℚ≥0 → K for a division semiring K.

↑q : K is defined as (q.num : K) / (q.den : K).

Do not use this directly (instances of DivisionSemiring are allowed to override that default for better definitional properties). Instead, use the coercion.

Equations
  • q.castRec = q.num / q.den
def Rat.castRec {K : Type u_3} [NatCast K] [IntCast K] [Div K] (q : ) :
K

The default definition of the coercion ℚ → K for a division ring K.

↑q : K is defined as (q.num : K) / (q.den : K).

Do not use this directly (instances of DivisionRing are allowed to override that default for better definitional properties). Instead, use the coercion.

Equations
  • q.castRec = q.num / q.den
class DivisionSemiring (α : Type u_4) extends Semiring , Inv , Div , Nontrivial , NNRatCast :
Type u_4

A DivisionSemiring is a Semiring with multiplicative inverses for nonzero elements.

An instance of DivisionSemiring K includes maps nnratCast : ℚ≥0 → K and nnqsmul : ℚ≥0 → K → K. Those two fields are needed to implement the DivisionSemiring K → Algebra ℚ≥0 K instance since we need to control the specific definitions for some special cases of K (in particular K = ℚ≥0 itself). See also note [forgetful inheritance].

If the division semiring has positive characteristic p, our division by zero convention forces nnratCast (1 / p) = 1 / 0 = 0.

  • add : ααα
  • add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
  • zero : α
  • zero_add : ∀ (a : α), 0 + a = a
  • add_zero : ∀ (a : α), a + 0 = a
  • nsmul : αα
  • nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
  • nsmul_succ : ∀ (n : ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
  • add_comm : ∀ (a b : α), a + b = b + a
  • mul : ααα
  • left_distrib : ∀ (a b c : α), a * (b + c) = a * b + a * c
  • right_distrib : ∀ (a b c : α), (a + b) * c = a * c + b * c
  • zero_mul : ∀ (a : α), 0 * a = 0
  • mul_zero : ∀ (a : α), a * 0 = 0
  • mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
  • one : α
  • one_mul : ∀ (a : α), 1 * a = a
  • mul_one : ∀ (a : α), a * 1 = a
  • natCast : α
  • natCast_zero : NatCast.natCast 0 = 0
  • natCast_succ : ∀ (n : ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
  • npow : αα
  • npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
  • npow_succ : ∀ (n : ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
  • inv : αα
  • div : ααα
  • div_eq_mul_inv : ∀ (a b : α), a / b = a * b⁻¹

    a / b := a * b⁻¹

  • zpow : αα

    The power operation: a ^ n = a * ··· * a; a ^ (-n) = a⁻¹ * ··· a⁻¹ (n times)

  • zpow_zero' : ∀ (a : α), DivisionSemiring.zpow 0 a = 1

    a ^ 0 = 1

  • zpow_succ' : ∀ (n : ) (a : α), DivisionSemiring.zpow (Int.ofNat n.succ) a = DivisionSemiring.zpow (Int.ofNat n) a * a

    a ^ (n + 1) = a ^ n * a

  • zpow_neg' : ∀ (n : ) (a : α), DivisionSemiring.zpow (Int.negSucc n) a = (DivisionSemiring.zpow (n.succ) a)⁻¹

    a ^ -(n + 1) = (a ^ (n + 1))⁻¹

  • exists_pair_ne : ∃ (x : α), ∃ (y : α), x y
  • inv_zero : 0⁻¹ = 0

    The inverse of 0 in a group with zero is 0.

  • mul_inv_cancel : ∀ (a : α), a 0a * a⁻¹ = 1

    Every nonzero element of a group with zero is invertible.

  • nnratCast : ℚ≥0α
  • nnratCast_def : ∀ (q : ℚ≥0), q = q.num / q.den

    However NNRat.cast is defined, it must be propositionally equal to a / b.

    Do not use this lemma directly. Use NNRat.cast_def instead.

  • nnqsmul : ℚ≥0αα

    Scalar multiplication by a nonnegative rational number.

    Unless there is a risk of a Module ℚ≥0 _ instance diamond, write nnqsmul := _. This will set nnqsmul to (NNRat.cast · * ·) thanks to unification in the default proof of nnqsmul_def.

    Do not use directly. Instead use the notation.

  • nnqsmul_def : ∀ (q : ℚ≥0) (a : α), DivisionSemiring.nnqsmul q a = q * a

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use NNRat.smul_def instead.

Instances
theorem DivisionSemiring.nnratCast_def {α : Type u_4} [self : DivisionSemiring α] (q : ℚ≥0) :
q = q.num / q.den

However NNRat.cast is defined, it must be propositionally equal to a / b.

Do not use this lemma directly. Use NNRat.cast_def instead.

theorem DivisionSemiring.nnqsmul_def {α : Type u_4} [self : DivisionSemiring α] (q : ℚ≥0) (a : α) :

However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

Do not use this lemma directly. Use NNRat.smul_def instead.

class DivisionRing (α : Type u_4) extends Ring , Inv , Div , Nontrivial , NNRatCast , RatCast :
Type u_4

A DivisionRing is a Ring with multiplicative inverses for nonzero elements.

An instance of DivisionRing K includes maps ratCast : ℚ → K and qsmul : ℚ → K → K. Those two fields are needed to implement the DivisionRing K → Algebra ℚ K instance since we need to control the specific definitions for some special cases of K (in particular K = ℚ itself). See also note [forgetful inheritance]. Similarly, there are maps nnratCast ℚ≥0 → K and nnqsmul : ℚ≥0 → K → K to implement the DivisionSemiring K → Algebra ℚ≥0 K instance.

If the division ring has positive characteristic p, our division by zero convention forces ratCast (1 / p) = 1 / 0 = 0.

  • add : ααα
  • add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
  • zero : α
  • zero_add : ∀ (a : α), 0 + a = a
  • add_zero : ∀ (a : α), a + 0 = a
  • nsmul : αα
  • nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
  • nsmul_succ : ∀ (n : ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
  • add_comm : ∀ (a b : α), a + b = b + a
  • mul : ααα
  • left_distrib : ∀ (a b c : α), a * (b + c) = a * b + a * c
  • right_distrib : ∀ (a b c : α), (a + b) * c = a * c + b * c
  • zero_mul : ∀ (a : α), 0 * a = 0
  • mul_zero : ∀ (a : α), a * 0 = 0
  • mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
  • one : α
  • one_mul : ∀ (a : α), 1 * a = a
  • mul_one : ∀ (a : α), a * 1 = a
  • natCast : α
  • natCast_zero : NatCast.natCast 0 = 0
  • natCast_succ : ∀ (n : ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
  • npow : αα
  • npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
  • npow_succ : ∀ (n : ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
  • neg : αα
  • sub : ααα
  • sub_eq_add_neg : ∀ (a b : α), a - b = a + -b
  • zsmul : αα
  • zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
  • zsmul_succ' : ∀ (n : ) (a : α), Ring.zsmul (Int.ofNat n.succ) a = Ring.zsmul (Int.ofNat n) a + a
  • zsmul_neg' : ∀ (n : ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (n.succ) a
  • add_left_neg : ∀ (a : α), -a + a = 0
  • intCast : α
  • intCast_ofNat : ∀ (n : ), IntCast.intCast n = n
  • intCast_negSucc : ∀ (n : ), IntCast.intCast (Int.negSucc n) = -(n + 1)
  • inv : αα
  • div : ααα
  • div_eq_mul_inv : ∀ (a b : α), a / b = a * b⁻¹

    a / b := a * b⁻¹

  • zpow : αα

    The power operation: a ^ n = a * ··· * a; a ^ (-n) = a⁻¹ * ··· a⁻¹ (n times)

  • zpow_zero' : ∀ (a : α), DivisionRing.zpow 0 a = 1

    a ^ 0 = 1

  • zpow_succ' : ∀ (n : ) (a : α), DivisionRing.zpow (Int.ofNat n.succ) a = DivisionRing.zpow (Int.ofNat n) a * a

    a ^ (n + 1) = a ^ n * a

  • zpow_neg' : ∀ (n : ) (a : α), DivisionRing.zpow (Int.negSucc n) a = (DivisionRing.zpow (n.succ) a)⁻¹

    a ^ -(n + 1) = (a ^ (n + 1))⁻¹

  • exists_pair_ne : ∃ (x : α), ∃ (y : α), x y
  • nnratCast : ℚ≥0α
  • ratCast : α
  • mul_inv_cancel : ∀ (a : α), a 0a * a⁻¹ = 1

    For a nonzero a, a⁻¹ is a right multiplicative inverse.

  • inv_zero : 0⁻¹ = 0

    The inverse of 0 is 0 by convention.

  • nnratCast_def : ∀ (q : ℚ≥0), q = q.num / q.den

    However NNRat.cast is defined, it must be equal to a / b.

    Do not use this lemma directly. Use NNRat.cast_def instead.

  • nnqsmul : ℚ≥0αα

    Scalar multiplication by a nonnegative rational number.

    Unless there is a risk of a Module ℚ≥0 _ instance diamond, write nnqsmul := _. This will set nnqsmul to (NNRat.cast · * ·) thanks to unification in the default proof of nnqsmul_def.

    Do not use directly. Instead use the notation.

  • nnqsmul_def : ∀ (q : ℚ≥0) (a : α), DivisionRing.nnqsmul q a = q * a

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use NNRat.smul_def instead.

  • ratCast_def : ∀ (q : ), q = q.num / q.den

    However Rat.cast q is defined, it must be propositionally equal to q.num / q.den.

    Do not use this lemma directly. Use Rat.cast_def instead.

  • qsmul : αα

    Scalar multiplication by a rational number.

    Unless there is a risk of a Module ℚ _ instance diamond, write qsmul := _. This will set qsmul to (Rat.cast · * ·) thanks to unification in the default proof of qsmul_def.

    Do not use directly. Instead use the notation.

  • qsmul_def : ∀ (a : ) (x : α), DivisionRing.qsmul a x = a * x

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use Rat.cast_def instead.

Instances
theorem DivisionRing.mul_inv_cancel {α : Type u_4} [self : DivisionRing α] (a : α) :
a 0a * a⁻¹ = 1

For a nonzero a, a⁻¹ is a right multiplicative inverse.

theorem DivisionRing.inv_zero {α : Type u_4} [self : DivisionRing α] :
0⁻¹ = 0

The inverse of 0 is 0 by convention.

theorem DivisionRing.nnratCast_def {α : Type u_4} [self : DivisionRing α] (q : ℚ≥0) :
q = q.num / q.den

However NNRat.cast is defined, it must be equal to a / b.

Do not use this lemma directly. Use NNRat.cast_def instead.

theorem DivisionRing.nnqsmul_def {α : Type u_4} [self : DivisionRing α] (q : ℚ≥0) (a : α) :

However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

Do not use this lemma directly. Use NNRat.smul_def instead.

theorem DivisionRing.ratCast_def {α : Type u_4} [self : DivisionRing α] (q : ) :
q = q.num / q.den

However Rat.cast q is defined, it must be propositionally equal to q.num / q.den.

Do not use this lemma directly. Use Rat.cast_def instead.

theorem DivisionRing.qsmul_def {α : Type u_4} [self : DivisionRing α] (a : ) (x : α) :

However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

Do not use this lemma directly. Use Rat.cast_def instead.

@[instance 100]
Equations
  • DivisionRing.toDivisionSemiring = let __src := inst; DivisionSemiring.mk DivisionRing.zpow DivisionRing.nnqsmul
class Semifield (α : Type u_4) extends CommSemiring , Inv , Div , Nontrivial , NNRatCast :
Type u_4

A Semifield is a CommSemiring with multiplicative inverses for nonzero elements.

An instance of Semifield K includes maps nnratCast : ℚ≥0 → K and nnqsmul : ℚ≥0 → K → K. Those two fields are needed to implement the DivisionSemiring K → Algebra ℚ≥0 K instance since we need to control the specific definitions for some special cases of K (in particular K = ℚ≥0 itself). See also note [forgetful inheritance].

If the semifield has positive characteristic p, our division by zero convention forces nnratCast (1 / p) = 1 / 0 = 0.

  • add : ααα
  • add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
  • zero : α
  • zero_add : ∀ (a : α), 0 + a = a
  • add_zero : ∀ (a : α), a + 0 = a
  • nsmul : αα
  • nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
  • nsmul_succ : ∀ (n : ) (x : α), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
  • add_comm : ∀ (a b : α), a + b = b + a
  • mul : ααα
  • left_distrib : ∀ (a b c : α), a * (b + c) = a * b + a * c
  • right_distrib : ∀ (a b c : α), (a + b) * c = a * c + b * c
  • zero_mul : ∀ (a : α), 0 * a = 0
  • mul_zero : ∀ (a : α), a * 0 = 0
  • mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
  • one : α
  • one_mul : ∀ (a : α), 1 * a = a
  • mul_one : ∀ (a : α), a * 1 = a
  • natCast : α
  • natCast_zero : NatCast.natCast 0 = 0
  • natCast_succ : ∀ (n : ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
  • npow : αα
  • npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
  • npow_succ : ∀ (n : ) (x : α), Semiring.npow (n + 1) x = Semiring.npow n x * x
  • mul_comm : ∀ (a b : α), a * b = b * a
  • inv : αα
  • div : ααα
  • div_eq_mul_inv : ∀ (a b : α), a / b = a * b⁻¹

    a / b := a * b⁻¹

  • zpow : αα

    The power operation: a ^ n = a * ··· * a; a ^ (-n) = a⁻¹ * ··· a⁻¹ (n times)

  • zpow_zero' : ∀ (a : α), Semifield.zpow 0 a = 1

    a ^ 0 = 1

  • zpow_succ' : ∀ (n : ) (a : α), Semifield.zpow (Int.ofNat n.succ) a = Semifield.zpow (Int.ofNat n) a * a

    a ^ (n + 1) = a ^ n * a

  • zpow_neg' : ∀ (n : ) (a : α), Semifield.zpow (Int.negSucc n) a = (Semifield.zpow (n.succ) a)⁻¹

    a ^ -(n + 1) = (a ^ (n + 1))⁻¹

  • exists_pair_ne : ∃ (x : α), ∃ (y : α), x y
  • inv_zero : 0⁻¹ = 0

    The inverse of 0 in a group with zero is 0.

  • mul_inv_cancel : ∀ (a : α), a 0a * a⁻¹ = 1

    Every nonzero element of a group with zero is invertible.

  • nnratCast : ℚ≥0α
  • nnratCast_def : ∀ (q : ℚ≥0), q = q.num / q.den

    However NNRat.cast is defined, it must be propositionally equal to a / b.

    Do not use this lemma directly. Use NNRat.cast_def instead.

  • nnqsmul : ℚ≥0αα

    Scalar multiplication by a nonnegative rational number.

    Unless there is a risk of a Module ℚ≥0 _ instance diamond, write nnqsmul := _. This will set nnqsmul to (NNRat.cast · * ·) thanks to unification in the default proof of nnqsmul_def.

    Do not use directly. Instead use the notation.

  • nnqsmul_def : ∀ (q : ℚ≥0) (a : α), Semifield.nnqsmul q a = q * a

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use NNRat.smul_def instead.

Instances
class Field (K : Type u) extends CommRing , Inv , Div , Nontrivial , NNRatCast , RatCast :

A Field is a CommRing with multiplicative inverses for nonzero elements.

An instance of Field K includes maps ratCast : ℚ → K and qsmul : ℚ → K → K. Those two fields are needed to implement the DivisionRing K → Algebra ℚ K instance since we need to control the specific definitions for some special cases of K (in particular K = ℚ itself). See also note [forgetful inheritance].

If the field has positive characteristic p, our division by zero convention forces ratCast (1 / p) = 1 / 0 = 0.

  • add : KKK
  • add_assoc : ∀ (a b c : K), a + b + c = a + (b + c)
  • zero : K
  • zero_add : ∀ (a : K), 0 + a = a
  • add_zero : ∀ (a : K), a + 0 = a
  • nsmul : KK
  • nsmul_zero : ∀ (x : K), AddMonoid.nsmul 0 x = 0
  • nsmul_succ : ∀ (n : ) (x : K), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
  • add_comm : ∀ (a b : K), a + b = b + a
  • mul : KKK
  • left_distrib : ∀ (a b c : K), a * (b + c) = a * b + a * c
  • right_distrib : ∀ (a b c : K), (a + b) * c = a * c + b * c
  • zero_mul : ∀ (a : K), 0 * a = 0
  • mul_zero : ∀ (a : K), a * 0 = 0
  • mul_assoc : ∀ (a b c : K), a * b * c = a * (b * c)
  • one : K
  • one_mul : ∀ (a : K), 1 * a = a
  • mul_one : ∀ (a : K), a * 1 = a
  • natCast : K
  • natCast_zero : NatCast.natCast 0 = 0
  • natCast_succ : ∀ (n : ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
  • npow : KK
  • npow_zero : ∀ (x : K), Semiring.npow 0 x = 1
  • npow_succ : ∀ (n : ) (x : K), Semiring.npow (n + 1) x = Semiring.npow n x * x
  • neg : KK
  • sub : KKK
  • sub_eq_add_neg : ∀ (a b : K), a - b = a + -b
  • zsmul : KK
  • zsmul_zero' : ∀ (a : K), Ring.zsmul 0 a = 0
  • zsmul_succ' : ∀ (n : ) (a : K), Ring.zsmul (Int.ofNat n.succ) a = Ring.zsmul (Int.ofNat n) a + a
  • zsmul_neg' : ∀ (n : ) (a : K), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (n.succ) a
  • add_left_neg : ∀ (a : K), -a + a = 0
  • intCast : K
  • intCast_ofNat : ∀ (n : ), IntCast.intCast n = n
  • intCast_negSucc : ∀ (n : ), IntCast.intCast (Int.negSucc n) = -(n + 1)
  • mul_comm : ∀ (a b : K), a * b = b * a
  • inv : KK
  • div : KKK
  • div_eq_mul_inv : ∀ (a b : K), a / b = a * b⁻¹

    a / b := a * b⁻¹

  • zpow : KK

    The power operation: a ^ n = a * ··· * a; a ^ (-n) = a⁻¹ * ··· a⁻¹ (n times)

  • zpow_zero' : ∀ (a : K), Field.zpow 0 a = 1

    a ^ 0 = 1

  • zpow_succ' : ∀ (n : ) (a : K), Field.zpow (Int.ofNat n.succ) a = Field.zpow (Int.ofNat n) a * a

    a ^ (n + 1) = a ^ n * a

  • zpow_neg' : ∀ (n : ) (a : K), Field.zpow (Int.negSucc n) a = (Field.zpow (n.succ) a)⁻¹

    a ^ -(n + 1) = (a ^ (n + 1))⁻¹

  • exists_pair_ne : ∃ (x : K), ∃ (y : K), x y
  • nnratCast : ℚ≥0K
  • ratCast : K
  • mul_inv_cancel : ∀ (a : K), a 0a * a⁻¹ = 1

    For a nonzero a, a⁻¹ is a right multiplicative inverse.

  • inv_zero : 0⁻¹ = 0

    The inverse of 0 is 0 by convention.

  • nnratCast_def : ∀ (q : ℚ≥0), q = q.num / q.den

    However NNRat.cast is defined, it must be equal to a / b.

    Do not use this lemma directly. Use NNRat.cast_def instead.

  • nnqsmul : ℚ≥0KK

    Scalar multiplication by a nonnegative rational number.

    Unless there is a risk of a Module ℚ≥0 _ instance diamond, write nnqsmul := _. This will set nnqsmul to (NNRat.cast · * ·) thanks to unification in the default proof of nnqsmul_def.

    Do not use directly. Instead use the notation.

  • nnqsmul_def : ∀ (q : ℚ≥0) (a : K), Field.nnqsmul q a = q * a

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use NNRat.smul_def instead.

  • ratCast_def : ∀ (q : ), q = q.num / q.den

    However Rat.cast q is defined, it must be propositionally equal to q.num / q.den.

    Do not use this lemma directly. Use Rat.cast_def instead.

  • qsmul : KK

    Scalar multiplication by a rational number.

    Unless there is a risk of a Module ℚ _ instance diamond, write qsmul := _. This will set qsmul to (Rat.cast · * ·) thanks to unification in the default proof of qsmul_def.

    Do not use directly. Instead use the notation.

  • qsmul_def : ∀ (a : ) (x : K), Field.qsmul a x = a * x

    However qsmul is defined, it must be propositionally equal to multiplication by Rat.cast.

    Do not use this lemma directly. Use Rat.cast_def instead.

Instances
@[instance 100]
instance Field.toSemifield {α : Type u_1} [Field α] :
Equations
  • Field.toSemifield = let __src := inst; Semifield.mk Field.zpow Field.nnqsmul
@[instance 100]
Equations
  • NNRat.smulDivisionSemiring = { smul := DivisionSemiring.nnqsmul }
theorem NNRat.cast_def {α : Type u_1} [DivisionSemiring α] (q : ℚ≥0) :
q = q.num / q.den
theorem NNRat.smul_def {α : Type u_1} [DivisionSemiring α] (q : ℚ≥0) (a : α) :
q a = q * a
@[simp]
theorem NNRat.smul_one_eq_cast (α : Type u_1) [DivisionSemiring α] (q : ℚ≥0) :
q 1 = q
@[deprecated NNRat.smul_one_eq_cast]
theorem NNRat.smul_one_eq_coe (α : Type u_1) [DivisionSemiring α] (q : ℚ≥0) :
q 1 = q

Alias of NNRat.smul_one_eq_cast.

theorem Rat.cast_def {K : Type u_3} [DivisionRing K] (q : ) :
q = q.num / q.den
theorem Rat.cast_mk' {K : Type u_3} [DivisionRing K] (a : ) (b : ) (h1 : b 0) (h2 : a.natAbs.Coprime b) :
{ num := a, den := b, den_nz := h1, reduced := h2 } = a / b
@[instance 100]
instance Rat.smulDivisionRing {K : Type u_3} [DivisionRing K] :
Equations
  • Rat.smulDivisionRing = { smul := DivisionRing.qsmul }
theorem Rat.smul_def {K : Type u_3} [DivisionRing K] (a : ) (x : K) :
a x = a * x
@[simp]
theorem Rat.smul_one_eq_cast (A : Type u_4) [DivisionRing A] (m : ) :
m 1 = m
@[deprecated Rat.smul_one_eq_cast]
theorem Rat.smul_one_eq_coe (A : Type u_4) [DivisionRing A] (m : ) :
m 1 = m

Alias of Rat.smul_one_eq_cast.