Documentation

Foundation.FirstOrder.Basic.Coding

def LO.FirstOrder.Semiterm.toNat {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] {n : } :
Semiterm L ξ n
Equations
@[irreducible]
def LO.FirstOrder.Semiterm.ofNat {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] (n a✝ : ) :
Option (Semiterm L ξ n)
Equations
theorem LO.FirstOrder.Semiterm.ofNat_toNat {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] {n : } (t : Semiterm L ξ n) :
ofNat n t.toNat = some t
instance LO.FirstOrder.Semiterm.encodable {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] {n : } :
Equations
def LO.FirstOrder.Semiformula.toNat {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] [(k : ) → Encodable (L.Rel k)] {n : } :
Semiformula L ξ n
Equations
@[irreducible]
def LO.FirstOrder.Semiformula.ofNat {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] [(k : ) → Encodable (L.Rel k)] (n a✝ : ) :
Equations
theorem LO.FirstOrder.Semiformula.ofNat_toNat {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] [(k : ) → Encodable (L.Rel k)] {n : } (φ : Semiformula L ξ n) :
ofNat n φ.toNat = some φ
instance LO.FirstOrder.Semiformula.encodable {L : Language} [(k : ) → Encodable (L.Func k)] {ξ : Type u_1} [Encodable ξ] [(k : ) → Encodable (L.Rel k)] {n : } :
Equations