Equations
- Nat.«term_:>ₙ_» = Lean.ParserDescr.trailingNode `Nat.«term_:>ₙ_» 70 71 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " :>ₙ ") (Lean.ParserDescr.cat `term 70))
Equations
- Matrix.«term_:>_» = Lean.ParserDescr.trailingNode `Matrix.«term_:>_» 70 71 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " :> ") (Lean.ParserDescr.cat `term 70))
Equations
- (t <: h) i = Fin.lastCases h t i
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- Matrix.«term_<:_» = Lean.ParserDescr.trailingNode `Matrix.«term_<:_» 70 70 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " <: ") (Lean.ParserDescr.cat `term 71))
Equations
- Matrix.decVec x_4 x_5 x_6 = ⋯.mpr (isTrue trivial)
- Matrix.decVec v w d = ⋯.mpr (⋯.mpr (⋯.mpr instDecidableAnd))
theorem
Matrix.injective_vecCons
{n : ℕ}
{α : Type u}
{f : Fin n → α}
(h : Function.Injective f)
{a : α}
(ha : ∀ (i : Fin n), a ≠ f i)
:
Function.Injective (a :> f)
Equations
- Matrix.toList x_2 = []
- Matrix.toList v = v 0 :: Matrix.toList (v ∘ Fin.succ)
Equations
- Matrix.getM x_4 = pure finZeroElim
- Matrix.getM f = (fun (zero : x_3 0) (succ : (i : Fin n) → x_3 i.succ) (i : Fin (n + 1)) => Fin.cases zero succ i) <$> f 0 <*> Matrix.getM fun (x : Fin n) => f x.succ
Equations
- Matrix.appendr v w = Matrix.vecAppend ⋯ v w
Equations
- Matrix.vecToNat x_2 = 0
- Matrix.vecToNat v = Nat.pair (v 0) (Matrix.vecToNat (v ∘ Fin.succ)) + 1
Equations
- DMatrix.«term_::>_» = Lean.ParserDescr.trailingNode `DMatrix.«term_::>_» 70 71 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ::> ") (Lean.ParserDescr.cat `term 70))
Equations
- Nat.natToVec 0 0 = some ![]
- e.succ.natToVec n.succ = Option.map (fun (x : Fin n → ℕ) => (Nat.unpair e).1 :> x) ((Nat.unpair e).2.natToVec n)
- x✝¹.natToVec x✝ = none
@[simp]
def
Fintype.sup
{ι : Type u_1}
[Fintype ι]
{α : Type u_2}
[SemilatticeSup α]
[OrderBot α]
(f : ι → α)
:
α
Equations
- Fintype.sup f = Finset.univ.sup f
@[simp]
theorem
Fintype.elem_le_sup
{ι : Type u_2}
[Fintype ι]
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
(f : ι → α)
(i : ι)
:
theorem
Fintype.le_sup
{ι : Type u_2}
[Fintype ι]
{α : Type u_1}
[SemilatticeSup α]
[OrderBot α]
{a : α}
{f : ι → α}
(i : ι)
(le : a ≤ f i)
:
Equations
- Fintype.decideEqPi a b x✝ = decidable_of_iff (∀ (i : ι), a i = b i) ⋯
Equations
- String.vecToStr x_2 = ""
- String.vecToStr s = if n = 0 then s 0 else s 0 ++ ", " ++ String.vecToStr fun (i : Fin n) => s i.succ
Equations
- Function.funEqOn φ f g = ∀ (a : α), φ a → f a = g a
theorem
List.toFinset_map
{α : Type u}
{β : Type v}
[DecidableEq α]
[DecidableEq β]
{f : α → β}
(l : List α)
:
(map f l).toFinset = Finset.image f l.toFinset
theorem
List.toFinset_mono
{α : Type u}
[DecidableEq α]
{l l' : List α}
(h : l ⊆ l')
:
l.toFinset ⊆ l'.toFinset
@[simp]
theorem
List.sup_ofFn
{α : Type u}
[SemilatticeSup α]
[OrderBot α]
{n : ℕ}
(f : Fin n → α)
:
(ofFn f).sup = Finset.univ.sup f
Equations
- List.remove a = List.filter fun (x : α) => decide (x ≠ a)
@[simp]
@[simp]
theorem
List.mem_of_mem_remove
{α : Type u_1}
[DecidableEq α]
{a b : α}
{l : List α}
(h : b ∈ remove a l)
:
b ∈ l
@[simp]
theorem
List.remove_subset_remove
{α : Type u_1}
[DecidableEq α]
(a : α)
{l₁ l₂ : List α}
(h : l₁ ⊆ l₂)
:
theorem
List.remove_map_substet_map_remove
{α : Type u_2}
{β : Type u_1}
[DecidableEq α]
[DecidableEq β]
(f : α → β)
(l : List α)
(a : α)
:
Equations
- Finset.rangeOfFinite f = ⋯.toFinset
theorem
Finset.mem_rangeOfFinite_iff
{α : Type u}
{ι : Sort v}
[Finite ι]
{f : ι → α}
{a : α}
:
a ∈ rangeOfFinite f ↔ ∃ (i : ι), f i = a
noncomputable def
Finset.imageOfFinset
{α : Type u}
{β : Type v}
[DecidableEq β]
(s : Finset α)
(f : (a : α) → a ∈ s → β)
:
Finset β
Equations
- s.imageOfFinset f = s.biUnion fun (x : α) => Finset.rangeOfFinite (f x)
@[simp]
theorem
Finset.mem_imageOfFinset
{α : Type u}
{β : Type v}
[DecidableEq β]
{s : Finset α}
(f : (a : α) → a ∈ s → β)
(a : α)
(ha : a ∈ s)
:
f a ha ∈ s.imageOfFinset f
@[simp]
theorem
Finset.sup_univ_equiv
{β : Type v}
{α : Type u_1}
{α' : Type u_2}
[DecidableEq α]
[Fintype α]
[Fintype α']
[SemilatticeSup β]
[OrderBot β]
(f : α → β)
(e : α' ≃ α)
:
@[simp]
theorem
Part.mem_vector_mOfFn
{α : Type u_1}
{n : ℕ}
{w : List.Vector α n}
{v : Fin n →. α}
:
w ∈ List.Vector.mOfFn v ↔ ∀ (i : Fin n), w.get i ∈ v i
- exp : α → α