Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
LO.FirstOrder.Structure.Iso
(L : Language)
(M₁ : Type u_2)
(M₂ : Type u_3)
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
extends M₁ ↪ₛ[L] M₂ :
Type (max u_2 u_3)
- toFun : M₁ → M₂
- toFun_inj : Function.Injective self.toFun
- toFun_bij : Function.Bijective self.toFun
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.FirstOrder.Structure.ClosedSubset.ext
{L : Language}
{M : Type u_1}
{s : Structure L M}
{x y : ClosedSubset L M}
(domain : x.domain = y.domain)
:
x = y
class
LO.FirstOrder.Structure.EmbeddingClass
(F : Type u_5)
(L : outParam Language)
(M₁ : outParam (Type u_6))
(M₂ : outParam (Type u_7))
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
[FunLike F M₁ M₂]
extends LO.FirstOrder.Structure.HomClass F L M₁ M₂ :
- map_inj (f : F) : Function.Injective ⇑f
Instances
class
LO.FirstOrder.Structure.IsoClass
(F : Type u_5)
(L : outParam Language)
(M₁ : outParam (Type u_6))
(M₂ : outParam (Type u_7))
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
[FunLike F M₁ M₂]
extends LO.FirstOrder.Structure.EmbeddingClass F L M₁ M₂ :
- map_bij (f : F) : Function.Bijective ⇑f
Instances
theorem
LO.FirstOrder.Structure.HomClass.val_term
{L : Language}
{M₁ : Type u_2}
{M₂ : Type u_3}
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
{F : Type u_5}
[FunLike F M₁ M₂]
[HomClass F L M₁ M₂]
(φ : F)
{n : ℕ}
{ξ : Type u_6}
(e : Fin n → M₁)
(ε : ξ → M₁)
(t : Semiterm L ξ n)
:
φ (Semiterm.val s₁ e ε t) = Semiterm.val s₂ (⇑φ ∘ e) (⇑φ ∘ ε) t
instance
LO.FirstOrder.Structure.instEmbeddingClassEmbedding
{L : Language}
{M₁ : Type u_2}
{M₂ : Type u_3}
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
:
EmbeddingClass (M₁ ↪ₛ[L] M₂) L M₁ M₂
def
LO.FirstOrder.Structure.EmbeddingClass.toEmbedding
{L : Language}
{M₁ : Type u_2}
{M₂ : Type u_3}
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
{F : Type u_5}
[FunLike F M₁ M₂]
[EmbeddingClass F L M₁ M₂]
(φ : F)
:
M₁ ↪ M₂
Equations
- LO.FirstOrder.Structure.EmbeddingClass.toEmbedding φ = { toFun := ⇑φ, inj' := ⋯ }
Instances For
instance
LO.FirstOrder.Structure.ClosedSubset.instSetLike
{L : Language}
{M : Type u_1}
[s : Structure L M]
:
SetLike (ClosedSubset L M) M
Equations
- LO.FirstOrder.Structure.ClosedSubset.instSetLike = { coe := LO.FirstOrder.Structure.ClosedSubset.domain, coe_injective' := ⋯ }
instance
LO.FirstOrder.Structure.ClosedSubset.toStructure
{L : Language}
{M : Type u_1}
[s : Structure L M]
(u : ClosedSubset L M)
:
Structure L ↥u
Equations
- One or more equations did not get rendered due to their size.
def
LO.FirstOrder.Structure.ClosedSubset.inclusion
{L : Language}
{M : Type u_1}
[s : Structure L M]
(u : ClosedSubset L M)
:
Equations
- u.inclusion = { toFun := Subtype.val, func' := ⋯, rel' := ⋯, toFun_inj := ⋯, rel_inv' := ⋯ }
Instances For
theorem
LO.FirstOrder.Semiformula.eval_hom_iff_of_open
{ξ : Type u_6}
{L : Language}
{M₁ : Type u_2}
{M₂ : Type u_3}
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
{F : Type u_5}
[FunLike F M₁ M₂]
[Structure.EmbeddingClass F L M₁ M₂]
(Θ : F)
{n : ℕ}
{e₁ : Fin n → M₁}
{ε₁ : ξ → M₁}
{φ : Semiformula L ξ n}
:
theorem
LO.FirstOrder.Semiformula.eval_hom_univClosure
{ξ : Type u_6}
{L : Language}
{M₁ : Type u_2}
{M₂ : Type u_3}
[s₁ : Structure L M₁]
[s₂ : Structure L M₂]
{F : Type u_5}
[FunLike F M₁ M₂]
[Structure.EmbeddingClass F L M₁ M₂]
(Θ : F)
{n : ℕ}
{ε₁ : ξ → M₁}
{φ : Semiformula L ξ n}
(hp : φ.Open)
:
Equations
- One or more equations did not get rendered due to their size.