Documentation

Foundation.Logic.Predicate.Quantifier

class LO.SigmaSymbol (α : Type u_1) :
Type u_1
  • sigma : α
Instances
    class LO.PiSymbol (α : Type u_1) :
    Type u_1
    • pi : α
    Instances
      class LO.DeltaSymbol (α : Type u_1) :
      Type u_1
      • delta : α
      Instances
        inductive LO.Polarity :
        Instances For
          @[simp]
          @[simp]
          @[simp]
          @[simp]
          theorem LO.Polarity.alt_alt (Γ : Polarity) :
          Γ.alt.alt = Γ
          Instances For
            @[simp]
            theorem LO.SigmaPiDelta.alt_alt (Γ : SigmaPiDelta) :
            Γ.alt.alt = Γ
            class LO.UnivQuantifier (α : Type u_1) :
            Type u_1
            • univ {n : } : α (n + 1)α n
            Instances
              class LO.ExQuantifier (α : Type u_1) :
              Type u_1
              • ex {n : } : α (n + 1)α n
              Instances
                class LO.Quantifier (α : Type u_1) extends LO.UnivQuantifier α, LO.ExQuantifier α :
                Type u_1
                • univ {n : } : α (n + 1)α n
                • ex {n : } : α (n + 1)α n
                Instances
                  class LO.LCWQ (α : Type u_1) extends LO.Quantifier α :
                  Type u_1

                  Logical Connectives with Quantifiers.

                  Instances
                    def LO.quant {α : Type u_1} [UnivQuantifier α] [ExQuantifier α] {n : } :
                    Polarityα (n + 1)α n
                    Equations
                    Instances For
                      @[simp]
                      theorem LO.quant_sigma {α : Type u_1} [UnivQuantifier α] [ExQuantifier α] {n : } (φ : α (n + 1)) :
                      @[simp]
                      theorem LO.quant_pi {α : Type u_1} [UnivQuantifier α] [ExQuantifier α] {n : } (φ : α (n + 1)) :
                      def LO.univClosure {α : Type u_1} [UnivQuantifier α] {n : } :
                      α nα 0
                      Equations
                      Instances For
                        @[simp]
                        theorem LO.univClosure_zero {α : Type u_1} [UnivQuantifier α] (a : α 0) :
                        ∀* a = a
                        theorem LO.univClosure_succ {α : Type u_1} [UnivQuantifier α] {n : } (a : α (n + 1)) :
                        def LO.univItr {α : Type u_1} [UnivQuantifier α] {n : } (k : ) :
                        α (n + k)α n
                        Equations
                        Instances For
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem LO.univItr_zero {α : Type u_1} [UnivQuantifier α] {n : } (a : α n) :
                            ∀^[0] a = a
                            @[simp]
                            theorem LO.univItr_one {α : Type u_1} [UnivQuantifier α] {n : } (a : α (n + 1)) :
                            theorem LO.univItr_succ {α : Type u_1} [UnivQuantifier α] {n k : } (a : α (n + (k + 1))) :
                            ∀^[k + 1] a = ∀^[k] ∀' a
                            def LO.exClosure {α : Type u_1} [ExQuantifier α] {n : } :
                            α nα 0
                            Equations
                            Instances For
                              @[simp]
                              theorem LO.exClosure_zero {α : Type u_1} [ExQuantifier α] (a : α 0) :
                              ∃* a = a
                              theorem LO.exClosure_succ {α : Type u_1} [ExQuantifier α] {n : } (a : α (n + 1)) :
                              def LO.exItr {α : Type u_1} [ExQuantifier α] {n : } (k : ) :
                              α (n + k)α n
                              Equations
                              Instances For
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem LO.exItr_zero {α : Type u_1} [ExQuantifier α] {n : } (a : α n) :
                                  ∃^[0] a = a
                                  @[simp]
                                  theorem LO.exItr_one {α : Type u_1} [ExQuantifier α] {n : } (a : α (n + 1)) :
                                  theorem LO.exItr_succ {α : Type u_1} [ExQuantifier α] {n k : } (a : α (n + (k + 1))) :
                                  ∃^[k + 1] a = ∃^[k] ∃' a
                                  def LO.ball {α : Type u_1} {n : } [UnivQuantifier α] [Arrow (α (n + 1))] (φ ψ : α (n + 1)) :
                                  α n
                                  Equations
                                  Instances For
                                    def LO.bex {α : Type u_1} {n : } [ExQuantifier α] [Wedge (α (n + 1))] (φ ψ : α (n + 1)) :
                                    α n
                                    Equations
                                    Instances For
                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For