Documentation

Foundation.Logic.Predicate.Quantifier

class LO.SigmaSymbol (α : Type u_1) :
Type u_1
  • sigma : α
Instances
    class LO.PiSymbol (α : Type u_1) :
    Type u_1
    • pi : α
    Instances
      class LO.DeltaSymbol (α : Type u_1) :
      Type u_1
      • delta : α
      Instances
        inductive LO.Polarity :
        Instances For
          @[simp]
          @[simp]
          @[simp]
          theorem LO.Polarity.alt_alt (Γ : LO.Polarity) :
          Γ.alt.alt = Γ
          @[simp]
          theorem LO.SigmaPiDelta.alt_alt (Γ : LO.SigmaPiDelta) :
          Γ.alt.alt = Γ
          class LO.UnivQuantifier (α : Type u_1) :
          Type u_1
          • univ : {n : } → α (n + 1)α n
          Instances
            class LO.ExQuantifier (α : Type u_1) :
            Type u_1
            • ex : {n : } → α (n + 1)α n
            Instances
              class LO.Quantifier (α : Type u_1) extends LO.UnivQuantifier α, LO.ExQuantifier α :
              Type u_1
              • univ : {n : } → α (n + 1)α n
              • ex : {n : } → α (n + 1)α n
              Instances
                class LO.LCWQ (α : Type u_1) extends LO.Quantifier α :
                Type u_1

                Logical Connectives with Quantifiers.

                Instances
                  def LO.quant {α : Type u_1} [LO.UnivQuantifier α] [LO.ExQuantifier α] {n : } :
                  LO.Polarityα (n + 1)α n
                  Equations
                  Instances For
                    @[simp]
                    theorem LO.quant_sigma {α : Type u_1} [LO.UnivQuantifier α] [LO.ExQuantifier α] {n : } (φ : α (n + 1)) :
                    @[simp]
                    theorem LO.quant_pi {α : Type u_1} [LO.UnivQuantifier α] [LO.ExQuantifier α] {n : } (φ : α (n + 1)) :
                    def LO.univClosure {α : Type u_1} [LO.UnivQuantifier α] {n : } :
                    α nα 0
                    Equations
                    Instances For
                      @[simp]
                      theorem LO.univClosure_zero {α : Type u_1} [LO.UnivQuantifier α] (a : α 0) :
                      ∀* a = a
                      theorem LO.univClosure_succ {α : Type u_1} [LO.UnivQuantifier α] {n : } (a : α (n + 1)) :
                      def LO.univItr {α : Type u_1} [LO.UnivQuantifier α] {n : } (k : ) :
                      α (n + k)α n
                      Equations
                      Instances For
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem LO.univItr_zero {α : Type u_1} [LO.UnivQuantifier α] {n : } (a : α n) :
                          ∀^[0] a = a
                          @[simp]
                          theorem LO.univItr_one {α : Type u_1} [LO.UnivQuantifier α] {n : } (a : α (n + 1)) :
                          theorem LO.univItr_succ {α : Type u_1} [LO.UnivQuantifier α] {n k : } (a : α (n + (k + 1))) :
                          ∀^[k + 1] a = ∀^[k] ∀' a
                          def LO.exClosure {α : Type u_1} [LO.ExQuantifier α] {n : } :
                          α nα 0
                          Equations
                          Instances For
                            @[simp]
                            theorem LO.exClosure_zero {α : Type u_1} [LO.ExQuantifier α] (a : α 0) :
                            ∃* a = a
                            theorem LO.exClosure_succ {α : Type u_1} [LO.ExQuantifier α] {n : } (a : α (n + 1)) :
                            def LO.exItr {α : Type u_1} [LO.ExQuantifier α] {n : } (k : ) :
                            α (n + k)α n
                            Equations
                            Instances For
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem LO.exItr_zero {α : Type u_1} [LO.ExQuantifier α] {n : } (a : α n) :
                                ∃^[0] a = a
                                @[simp]
                                theorem LO.exItr_one {α : Type u_1} [LO.ExQuantifier α] {n : } (a : α (n + 1)) :
                                theorem LO.exItr_succ {α : Type u_1} [LO.ExQuantifier α] {n k : } (a : α (n + (k + 1))) :
                                ∃^[k + 1] a = ∃^[k] ∃' a
                                def LO.ball {α : Type u_1} {n : } [LO.UnivQuantifier α] [LO.Arrow (α (n + 1))] (φ ψ : α (n + 1)) :
                                α n
                                Equations
                                Instances For
                                  def LO.bex {α : Type u_1} {n : } [LO.ExQuantifier α] [LO.Wedge (α (n + 1))] (φ ψ : α (n + 1)) :
                                  α n
                                  Equations
                                  Instances For
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For