Documentation

Foundation.Logic.Predicate.Quantifier

class LO.DeltaSymbol (α : Type u_1) :
Type u_1
  • delta : α
Instances
@[simp]
@[simp]
@[simp]
@[simp]
theorem LO.Polarity.alt_alt (Γ : Polarity) :
Γ.alt.alt = Γ
@[simp]
theorem LO.SigmaPiDelta.alt_alt (Γ : SigmaPiDelta) :
Γ.alt.alt = Γ
class LO.Quantifier (α : Type u_1) extends LO.UnivQuantifier α, LO.ExQuantifier α :
Type u_1
  • univ {n : } : α (n + 1)α n
  • ex {n : } : α (n + 1)α n
Instances
class LO.LCWQ (α : Type u_1) extends LO.Quantifier α :
Type u_1

Logical Connectives with Quantifiers.

Instances
def LO.quant {α : Type u_1} [UnivQuantifier α] [ExQuantifier α] {n : } :
Polarityα (n + 1)α n
Equations
@[simp]
theorem LO.quant_sigma {α : Type u_1} [UnivQuantifier α] [ExQuantifier α] {n : } (φ : α (n + 1)) :
@[simp]
theorem LO.quant_pi {α : Type u_1} [UnivQuantifier α] [ExQuantifier α] {n : } (φ : α (n + 1)) :
def LO.univClosure {α : Type u_1} [UnivQuantifier α] {n : } :
α nα 0
Equations
@[simp]
theorem LO.univClosure_zero {α : Type u_1} [UnivQuantifier α] (a : α 0) :
∀* a = a
theorem LO.univClosure_succ {α : Type u_1} [UnivQuantifier α] {n : } (a : α (n + 1)) :
def LO.univItr {α : Type u_1} [UnivQuantifier α] {n : } (k : ) :
α (n + k)α n
Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.univItr_zero {α : Type u_1} [UnivQuantifier α] {n : } (a : α n) :
∀^[0] a = a
@[simp]
theorem LO.univItr_one {α : Type u_1} [UnivQuantifier α] {n : } (a : α (n + 1)) :
theorem LO.univItr_succ {α : Type u_1} [UnivQuantifier α] {n k : } (a : α (n + (k + 1))) :
∀^[k + 1] a = ∀^[k] ∀' a
def LO.exClosure {α : Type u_1} [ExQuantifier α] {n : } :
α nα 0
Equations
@[simp]
theorem LO.exClosure_zero {α : Type u_1} [ExQuantifier α] (a : α 0) :
∃* a = a
theorem LO.exClosure_succ {α : Type u_1} [ExQuantifier α] {n : } (a : α (n + 1)) :
def LO.exItr {α : Type u_1} [ExQuantifier α] {n : } (k : ) :
α (n + k)α n
Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.exItr_zero {α : Type u_1} [ExQuantifier α] {n : } (a : α n) :
∃^[0] a = a
@[simp]
theorem LO.exItr_one {α : Type u_1} [ExQuantifier α] {n : } (a : α (n + 1)) :
theorem LO.exItr_succ {α : Type u_1} [ExQuantifier α] {n k : } (a : α (n + (k + 1))) :
∃^[k + 1] a = ∃^[k] ∃' a
def LO.ball {α : Type u_1} {n : } [UnivQuantifier α] [Arrow (α (n + 1))] (φ ψ : α (n + 1)) :
α n
Equations
def LO.bex {α : Type u_1} {n : } [ExQuantifier α] [Wedge (α (n + 1))] (φ ψ : α (n + 1)) :
α n
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.