Documentation

Arithmetization.Definability.Hierarchy

Arithmetical Formula Sorted by Arithmetical Hierarchy #

This file defines the Σn/Πn/Δn formulas of arithmetic of first-order logic.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
@[reducible, inline]
Equations
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkSigma {ξ : Type u_1} {n m : } (φ : Semiformula ℒₒᵣ ξ n) (hp : Hierarchy 𝚺 m φ) :
(mkSigma φ hp).val = φ
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkPi {ξ : Type u_1} {n m : } (φ : Semiformula ℒₒᵣ ξ n) (hp : Hierarchy 𝚷 m φ) :
(mkPi φ hp).val = φ
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkDelta {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }) (ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }) :
(φ.mkDelta ψ).val = φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_prop {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }) :
Hierarchy 𝚺 m φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_prop {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }) :
Hierarchy 𝚷 m φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.polarity_prop {ξ : Type u_1} {n m : } {Γ : Polarity} (φ : HierarchySymbol.Semiformula ξ n { Γ := Γ.coe, rank := m }) :
Hierarchy Γ m φ.val
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma {ξ : Type u_1} {n m : } :
HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }
Equations
  • (φ.mkDelta a).sigma = φ
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_mkDelta {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }) (ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }) :
(φ.mkDelta ψ).sigma = φ
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi {ξ : Type u_1} {n m : } :
HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }
Equations
  • (φ.mkDelta a).pi = a
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_mkDelta {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }) (ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }) :
(φ.mkDelta ψ).pi = ψ
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_sigma {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
φ.sigma.val = φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkPolarity {ξ : Type u_1} {n m : } (φ : Semiformula ℒₒᵣ ξ n) {Γ : Polarity} (h : Hierarchy Γ m φ) :
(mkPolarity φ Γ h).val = φ
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.hierarchy_sigma {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }) :
Hierarchy 𝚺 m φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.hierarchy_pi {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }) :
Hierarchy 𝚷 m φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.hierarchy_zero {ξ : Type u_1} {n : } {Γ : SigmaPiDelta} {Γ' : Polarity} {m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := Γ, rank := 0 }) :
Hierarchy Γ' m φ.val
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn {n : } (M : Type u_2) [ORingStruc M] {m : } (φ : { Γ := 𝚫, rank := m }.Semisentence n) :
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProvablyProperOn {n m : } (φ : { Γ := 𝚫, rank := m }.Semisentence n) (T : Theory ℒₒᵣ) :
Equations
  • One or more equations did not get rendered due to their size.
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.iff {n : } {M : Type u_2} [ORingStruc M] {m : } {φ : { Γ := 𝚫, rank := m }.Semisentence n} (h : ProperOn M φ) (e : Fin nM) :
M ⊧/e (sigma φ).val M ⊧/e (pi φ).val
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.iff {n : } {M : Type u_2} [ORingStruc M] {m : } {φ : HierarchySymbol.Semiformula M n { Γ := 𝚫, rank := m }} (h : ProperWithParamOn M φ) (e : Fin nM) :
(Semiformula.Evalm M e id) φ.sigma.val (Semiformula.Evalm M e id) φ.pi.val
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.iff' {n : } {M : Type u_2} [ORingStruc M] {m : } {φ : { Γ := 𝚫, rank := m }.Semisentence n} (h : ProperOn M φ) (e : Fin nM) :
M ⊧/e (pi φ).val M ⊧/e (val φ)
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.iff' {n : } {M : Type u_2} [ORingStruc M] {m : } {φ : HierarchySymbol.Semiformula M n { Γ := 𝚫, rank := m }} (h : ProperWithParamOn M φ) (e : Fin nM) :
(Semiformula.Evalm M e id) φ.pi.val (Semiformula.Evalm M e id) φ.val
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProvablyProperOn.ofProperOn {n : } (T : Theory ℒₒᵣ) {m : } [𝐄𝐐 T] {φ : { Γ := 𝚫, rank := m }.Semisentence n} (h : ∀ (M : Type w) [inst : ORingStruc M] [inst_1 : M ⊧ₘ* T], ProperOn M φ) :
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProvablyProperOn.properOn {n : } {T : Theory ℒₒᵣ} {m : } {φ : { Γ := 𝚫, rank := m }.Semisentence n} (h : ProvablyProperOn φ T) (M : Type w) [ORingStruc M] [M ⊧ₘ* T] :
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.rew {ξ₁ : Type u_3} {n₁ : } {ξ₂ : Type u_4} {n₂ : } (ω : Rew ℒₒᵣ ξ₁ n₁ ξ₂ n₂) {Γ : HierarchySymbol} :
Equations
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_rew {ξ₁ : Type u_3} {n₁ : } {ξ₂ : Type u_4} {n₂ : } (ω : Rew ℒₒᵣ ξ₁ n₁ ξ₂ n₂) {Γ : HierarchySymbol} (φ : HierarchySymbol.Semiformula ξ₁ n₁ Γ) :
(rew ω φ).val = (Rewriting.app ω) φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.rew {M : Type u_2} [ORingStruc M] {m n₁ n₂ : } {φ : { Γ := 𝚫, rank := m }.Semisentence n₁} (h : ProperOn M φ) (ω : Rew ℒₒᵣ Empty n₁ Empty n₂) :
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.rew' {M : Type u_2} [ORingStruc M] {m n₁ n₂ : } {φ : { Γ := 𝚫, rank := m }.Semisentence n₁} (h : ProperOn M φ) (ω : Rew ℒₒᵣ Empty n₁ M n₂) :
@[simp]
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_emb {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
φ.emb.pi = φ.pi.emb
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_emb {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
φ.emb.sigma = φ.sigma.emb
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.emb_proper {n : } {M : Type u_2} [ORingStruc M] {m : } (φ : { Γ := 𝚫, rank := m }.Semisentence n) :
ProperOn M (emb φ) ProperOn M φ
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.eval_extd_iff {ξ : Type u_1} {n : } {Γ : HierarchySymbol} {M : Type u_2} [ORingStruc M] {e : Fin nM} {ε : ξM} {φ : HierarchySymbol.Semiformula ξ n Γ} :
(Semiformula.Evalm M e ε) φ.extd.val (Semiformula.Evalm M e ε) φ.val
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.extd {n : } {M : Type u_2} [ORingStruc M] {m : } {φ : { Γ := 𝚫, rank := m }.Semisentence n} (h : ProperOn M φ) :
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.extd {n : } {M : Type u_2} [ORingStruc M] {m : } {φ : { Γ := 𝚫, rank := m }.Semisentence n} (h : ProperOn M φ) :
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigmaZero {ξ : Type u_1} {k : } {Γ : SigmaPiDelta} (φ : HierarchySymbol.Semiformula ξ k { Γ := Γ, rank := 0 }) :
Hierarchy 𝚺 0 φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ofZero_val {ξ : Type u_1} {n : } {Γ' : SigmaPiDelta} (φ : HierarchySymbol.Semiformula ξ n { Γ := Γ', rank := 0 }) (Γ : HierarchySymbol) :
(φ.ofZero Γ).val = φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.of_zero {M : Type u_2} [ORingStruc M] {Γ' : SigmaPiDelta} {k : } (φ : { Γ := Γ', rank := 0 }.Semisentence k) (m : ) :
ProperOn M (ofZero φ { Γ := 𝚫, rank := m })
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.of_zero {M : Type u_2} [ORingStruc M] {Γ' : SigmaPiDelta} {k : } (φ : HierarchySymbol.Semiformula M k { Γ := Γ', rank := 0 }) (m : ) :
ProperWithParamOn M (φ.ofZero { Γ := 𝚫, rank := m })
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.negDelta {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }
Equations
  • φ.negDelta = φ.pi.negPi.mkDelta φ.sigma.negSigma
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.all {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚷, rank := m + 1 }) :
HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m + 1 }
Equations
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ex {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚺, rank := m + 1 }) :
HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m + 1 }
Equations
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.substSigma {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ 1 { Γ := 𝚺, rank := m + 1 }) (F : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚺, rank := m + 1 }) :
HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m + 1 }
Equations
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_and {ξ : Type u_1} {n : } {Γ : HierarchySymbol} (φ ψ : HierarchySymbol.Semiformula ξ n Γ) :
(φ ψ).val = φ.val ψ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_and {ξ : Type u_1} {n m : } (φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ ψ).sigma = φ.sigma ψ.sigma
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_and {ξ : Type u_1} {n m : } (φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ ψ).pi = φ.pi ψ.pi
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_or {ξ : Type u_1} {n : } {Γ : HierarchySymbol} (φ ψ : HierarchySymbol.Semiformula ξ n Γ) :
(φ ψ).val = φ.val ψ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_or {ξ : Type u_1} {n m : } (φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ ψ).sigma = φ.sigma ψ.sigma
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_or {ξ : Type u_1} {n m : } (φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ ψ).pi = φ.pi ψ.pi
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_negSigma {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }) :
φ.negSigma.val = φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_negPi {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }) :
φ.negPi.val = φ.val
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_negDelta {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ).val = φ.pi.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_negDelta {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ).sigma = φ.pi.negPi
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_negPi {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }) :
(φ).pi = φ.sigma.negSigma
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_ball {ξ : Type u_1} {n : } {Γ : HierarchySymbol} (t : Semiterm ℒₒᵣ ξ n) (φ : HierarchySymbol.Semiformula ξ (n + 1) Γ) :
(ball t φ).val = (“(∀[!!(Semiterm.bvar 0) < !!(Rew.bShift t)] !φ.val)”)
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_bex {ξ : Type u_1} {n : } {Γ : HierarchySymbol} (t : Semiterm ℒₒᵣ ξ n) (φ : HierarchySymbol.Semiformula ξ (n + 1) Γ) :
(bex t φ).val = (“(∃[!!(Semiterm.bvar 0) < !!(Rew.bShift t)] !φ.val)”)
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_exSigma {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚺, rank := m + 1 }) :
φ.ex.val = ∃' φ.val
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_allPi {ξ : Type u_1} {n m : } (φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚷, rank := m + 1 }) :
φ.all.val = ∀' φ.val
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.and {M : Type u_2} [ORingStruc M] {m k : } {φ ψ : { Γ := 𝚫, rank := m }.Semisentence k} (hp : ProperOn M φ) (hq : ProperOn M ψ) :
ProperOn M (φ ψ)
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.or {M : Type u_2} [ORingStruc M] {m k : } {φ ψ : { Γ := 𝚫, rank := m }.Semisentence k} (hp : ProperOn M φ) (hq : ProperOn M ψ) :
ProperOn M (φ ψ)
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.neg {M : Type u_2} [ORingStruc M] {m k : } {φ : { Γ := 𝚫, rank := m }.Semisentence k} (hp : ProperOn M φ) :
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.eval_neg {M : Type u_2} [ORingStruc M] {m k : } {φ : { Γ := 𝚫, rank := m }.Semisentence k} (hp : ProperOn M φ) (e : Fin kM) :
M ⊧/e (val (φ)) ¬M ⊧/e (val φ)
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.ball {M : Type u_2} [ORingStruc M] {m k : } {t : Semiterm ℒₒᵣ Empty k} {φ : { Γ := 𝚫, rank := m + 1 }.Semisentence (k + 1)} (hp : ProperOn M φ) :
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.bex {M : Type u_2} [ORingStruc M] {m k : } {t : Semiterm ℒₒᵣ Empty k} {φ : { Γ := 𝚫, rank := m + 1 }.Semisentence (k + 1)} (hp : ProperOn M φ) :
def LO.FirstOrder.Arith.HierarchySymbol.Semiformula.graphDelta {ξ : Type u_1} {m k : } (φ : HierarchySymbol.Semiformula ξ (k + 1) { Γ := 𝚺, rank := m }) :
HierarchySymbol.Semiformula ξ (k + 1) { Γ := 𝚫, rank := m }
Equations
  • One or more equations did not get rendered due to their size.
  • φ_2.graphDelta = φ_2.ofZero { Γ := 𝚫, rank := 0 }
@[simp]
theorem LO.FirstOrder.Arith.HierarchySymbol.Semiformula.graphDelta_val {ξ : Type u_1} {m k : } (φ : HierarchySymbol.Semiformula ξ (k + 1) { Γ := 𝚺, rank := m }) :
φ.graphDelta.val = φ.val