Arithmetical Formula Sorted by Arithmetical Hierarchy #
This file defines the
𝚺-[m].Semiformula ξ n
is aSemiformula ℒₒᵣ ξ n
which is𝚺-[m]
.𝚷-[m].Semiformula ξ n
is aSemiformula ℒₒᵣ ξ n
which is𝚷-[m]
.𝚫-[m].Semiformula ξ n
is a pair of𝚺-[m].Semiformula ξ n
and𝚷-[m].Semiformula ξ n
.ProperOn
:φ.ProperOn M
iffφ
's two elementφ.sigma
andφ.pi
are equivalent on modelM
.
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Instances For
- LO.Arith.Language.Defined.func_definable
- LO.Arith.Language.Defined.rel_definable
- LO.Arith.Nuon.ext_Definable
- LO.Arith.Nuon.nuonAux_definable
- LO.Arith.bexp_definable
- LO.Arith.bitSubset_definable
- LO.Arith.cons_definable
- LO.Arith.div_definable
- LO.Arith.domain_definable
- LO.Arith.exp_definable_deltaZero
- LO.Arith.exponential_definable
- LO.Arith.ext_definable
- LO.Arith.fbit_definable
- LO.Arith.fstIdx_definable
- LO.Arith.hash_definable
- LO.Arith.insert_definable
- LO.Arith.isMapping_definable
- LO.Arith.lenbit_definable
- LO.Arith.length_definable
- LO.Arith.lh_definable
- LO.Arith.log_definable
- LO.Arith.mem_definable
- LO.Arith.mkSeq₁_definable
- LO.Arith.mkVec₁_definable
- LO.Arith.nuon_definable
- LO.Arith.pair_definable
- LO.Arith.pi₁_definable
- LO.Arith.pi₂_definable
- LO.Arith.pow2_definable
- LO.Arith.ppow2_definable
- LO.Arith.product_definable
- LO.Arith.range_definable
- LO.Arith.rem_definable
- LO.Arith.sUnion_definable
- LO.Arith.seqCons_definable
- LO.Arith.seq_definable
- LO.Arith.sndIdx_definable
- LO.Arith.sqrt_definable
- LO.Arith.under_definable
- LO.Arith.union_definable
- LO.Arith.znth_definable
@[reducible, inline]
@[reducible, inline]
@[reducible, inline]
Instances For
- LO.Arith.Fixpoint.Construction.limSeq_definable
- LO.Arith.Formalized.numeral_definable
- LO.Arith.Formalized.substItr_definable
- LO.Arith.Language.TermRec.Construction.graph_definable
- LO.Arith.Language.Theory.derivable_definable
- LO.Arith.Language.Theory.provable_definable
- LO.Arith.Language.bv_definable
- LO.Arith.Language.free_definable
- LO.Arith.Language.iff_definable
- LO.Arith.Language.imp_definable
- LO.Arith.Language.neg_definable
- LO.Arith.Language.qVec_definable
- LO.Arith.Language.setShift_definable
- LO.Arith.Language.shift_definable
- LO.Arith.Language.substs_definable
- LO.Arith.Language.substs₁_definable
- LO.Arith.Language.termBShiftVec_definable
- LO.Arith.Language.termBShift_definable
- LO.Arith.Language.termBVVec_definable
- LO.Arith.Language.termBV_definable
- LO.Arith.Language.termShiftVec_definable
- LO.Arith.Language.termShift_definable
- LO.Arith.Language.termSubstVec_definable
- LO.Arith.Language.termSubst_definable
- LO.Arith.Nth.graph_definable
- LO.Arith.PR.Construction.result_definable
- LO.Arith.VecRec.Construction.graph_definable
- LO.Arith.VecRec.Construction.graph_definable'
- LO.Arith.VecRec.Construction.result_definable
- LO.Arith.concat_definable
- LO.Arith.len_definable
- LO.Arith.listMax_definable
- LO.Arith.mkSeq₂_definable
- LO.Arith.mkVec₂_definable
- LO.Arith.nth_definable
- LO.Arith.provableₐ_definable
- LO.Arith.qqConj_definable
- LO.Arith.qqDisj_definable
- LO.Arith.qqVerums_definable
- LO.Arith.repeatVec_definable
- LO.Arith.takeLast_definable
- LO.Arith.vecToSet_definable
@[reducible, inline]
@[reducible, inline]
Instances For
- LO.Arith.Language.Theory.derivationOf_definable
- LO.Arith.Language.Theory.derivation_definable
- LO.Arith.Language.Theory.mem_definable
- LO.Arith.Language.isFormulaSet_definable
- LO.Arith.Language.isSemiformula_definable
- LO.Arith.Language.isSemitermVec_definable
- LO.Arith.Language.isSemiterm_definable
- LO.Arith.Language.isUFormulaDef_definable
- LO.Arith.Language.isUTermVecDef_definable
- LO.Arith.Language.isUTerm_definable
- LO.Arith.PR.Construction.result_definable_delta₁
- LO.Arith.memVec_definable
- LO.Arith.subsetVec_definable
Equations
- LO.FirstOrder.Arith.«term𝚺₀» = Lean.ParserDescr.node `LO.FirstOrder.Arith.«term𝚺₀» 1024 (Lean.ParserDescr.symbol "𝚺₀")
Equations
- LO.FirstOrder.Arith.«term𝚷₀» = Lean.ParserDescr.node `LO.FirstOrder.Arith.«term𝚷₀» 1024 (Lean.ParserDescr.symbol "𝚷₀")
Equations
- LO.FirstOrder.Arith.«term𝚫₀» = Lean.ParserDescr.node `LO.FirstOrder.Arith.«term𝚫₀» 1024 (Lean.ParserDescr.symbol "𝚫₀")
Equations
- LO.FirstOrder.Arith.«term𝚺₁» = Lean.ParserDescr.node `LO.FirstOrder.Arith.«term𝚺₁» 1024 (Lean.ParserDescr.symbol "𝚺₁")
Equations
- LO.FirstOrder.Arith.«term𝚷₁» = Lean.ParserDescr.node `LO.FirstOrder.Arith.«term𝚷₁» 1024 (Lean.ParserDescr.symbol "𝚷₁")
Equations
- LO.FirstOrder.Arith.«term𝚫₁» = Lean.ParserDescr.node `LO.FirstOrder.Arith.«term𝚫₁» 1024 (Lean.ParserDescr.symbol "𝚫₁")
inductive
LO.FirstOrder.Arith.HierarchySymbol.Semiformula
(ξ : Type u_1)
(n : ℕ)
:
HierarchySymbol → Type u_1
- mkSigma {ξ : Type u_1} {n m : ℕ} (φ : Semiformula ℒₒᵣ ξ n) : Hierarchy 𝚺 m φ → HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }
- mkPi {ξ : Type u_1} {n m : ℕ} (φ : Semiformula ℒₒᵣ ξ n) : Hierarchy 𝚷 m φ → HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }
- mkDelta {ξ : Type u_1} {n m : ℕ} : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m } → HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m } → HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }
Instances For
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instBot
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instLogicalConnectiveMkDeltaSigmaPiDelta
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instTildeMkDeltaSigmaPiDelta
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instTop
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instVee
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instWedge
@[reducible, inline]
Equations
- Γ.Semisentence n = LO.FirstOrder.Arith.HierarchySymbol.Semiformula Empty n Γ
Instances For
- LO.Arith.Fixpoint.Blueprint.instCoeSemisentenceDeltaOneHAddNatOfNat
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceDeltaOneSemisentenceORing
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceDeltaZeroSemisentenceORing
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentencePiOneSemisentenceORing
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentencePiZeroSemisentenceORing
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceSigmaOneSemisentenceORing
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceSigmaZeroSemisentenceORing
@[reducible, inline]
Equations
- Γ.Sentence = LO.FirstOrder.Arith.HierarchySymbol.Semiformula Empty 0 Γ
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ n Γ → Semiformula ℒₒᵣ ξ n
Equations
- (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma φ a).val = φ
- (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ a).val = φ
- (φ.mkDelta a).val = φ.val
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkSigma
{ξ : Type u_1}
{n m : ℕ}
(φ : Semiformula ℒₒᵣ ξ n)
(hp : Hierarchy 𝚺 m φ)
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkPi
{ξ : Type u_1}
{n m : ℕ}
(φ : Semiformula ℒₒᵣ ξ n)
(hp : Hierarchy 𝚷 m φ)
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkDelta
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
(ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
(φ.mkDelta ψ).val = φ.val
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceSigmaZeroSemisentenceORing
{n : ℕ}
:
Coe (𝚺₀.Semisentence n) (Semisentence ℒₒᵣ n)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentencePiZeroSemisentenceORing
{n : ℕ}
:
Coe (𝚷₀.Semisentence n) (Semisentence ℒₒᵣ n)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceDeltaZeroSemisentenceORing
{n : ℕ}
:
Coe (𝚫₀.Semisentence n) (Semisentence ℒₒᵣ n)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceSigmaOneSemisentenceORing
{n : ℕ}
:
Coe (𝚺₁.Semisentence n) (Semisentence ℒₒᵣ n)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentencePiOneSemisentenceORing
{n : ℕ}
:
Coe (𝚷₁.Semisentence n) (Semisentence ℒₒᵣ n)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instCoeSemisentenceDeltaOneSemisentenceORing
{n : ℕ}
:
Coe (𝚫₁.Semisentence n) (Semisentence ℒₒᵣ n)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_prop
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_prop
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.polarity_prop
{ξ : Type u_1}
{n m : ℕ}
{Γ : Polarity}
(φ : HierarchySymbol.Semiformula ξ n { Γ := Γ.coe, rank := m })
:
Hierarchy Γ m φ.val
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma
{ξ : Type u_1}
{n m : ℕ}
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m } → HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }
Equations
- (φ.mkDelta a).sigma = φ
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_mkDelta
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
(ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
(φ.mkDelta ψ).sigma = φ
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi
{ξ : Type u_1}
{n m : ℕ}
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m } → HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }
Equations
- (φ.mkDelta a).pi = a
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_mkDelta
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
(ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
(φ.mkDelta ψ).pi = ψ
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_sigma
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
φ.sigma.val = φ.val
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPolarity
{ξ : Type u_1}
{n m : ℕ}
(φ : Semiformula ℒₒᵣ ξ n)
(Γ : Polarity)
:
Hierarchy Γ m φ → HierarchySymbol.Semiformula ξ n { Γ := Γ.coe, rank := m }
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_mkPolarity
{ξ : Type u_1}
{n m : ℕ}
(φ : Semiformula ℒₒᵣ ξ n)
{Γ : Polarity}
(h : Hierarchy Γ m φ)
:
(mkPolarity φ Γ h).val = φ
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.hierarchy_sigma
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.hierarchy_pi
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.hierarchy_zero
{ξ : Type u_1}
{n : ℕ}
{Γ : SigmaPiDelta}
{Γ' : Polarity}
{m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := Γ, rank := 0 })
:
Hierarchy Γ' m φ.val
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn
{n : ℕ}
(M : Type u_2)
[ORingStruc M]
{m : ℕ}
(φ : { Γ := 𝚫, rank := m }.Semisentence n)
:
Equations
- One or more equations did not get rendered due to their size.
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn
{n : ℕ}
(M : Type u_2)
[ORingStruc M]
{m : ℕ}
(φ : HierarchySymbol.Semiformula M n { Γ := 𝚫, rank := m })
:
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.iff
{n : ℕ}
{M : Type u_2}
[ORingStruc M]
{m : ℕ}
{φ : HierarchySymbol.Semiformula M n { Γ := 𝚫, rank := m }}
(h : ProperWithParamOn M φ)
(e : Fin n → M)
:
(Semiformula.Evalm M e id) φ.sigma.val ↔ (Semiformula.Evalm M e id) φ.pi.val
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.iff'
{n : ℕ}
{M : Type u_2}
[ORingStruc M]
{m : ℕ}
{φ : HierarchySymbol.Semiformula M n { Γ := 𝚫, rank := m }}
(h : ProperWithParamOn M φ)
(e : Fin n → M)
:
(Semiformula.Evalm M e id) φ.pi.val ↔ (Semiformula.Evalm M e id) φ.val
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProvablyProperOn.ofProperOn
{n : ℕ}
(T : Theory ℒₒᵣ)
{m : ℕ}
[𝐄𝐐 ≼ T]
{φ : { Γ := 𝚫, rank := m }.Semisentence n}
(h : ∀ (M : Type w) [inst : ORingStruc M] [inst_1 : M ⊧ₘ* T], ProperOn M φ)
:
ProvablyProperOn φ T
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProvablyProperOn.properOn
{n : ℕ}
{T : Theory ℒₒᵣ}
{m : ℕ}
{φ : { Γ := 𝚫, rank := m }.Semisentence n}
(h : ProvablyProperOn φ T)
(M : Type w)
[ORingStruc M]
[M ⊧ₘ* T]
:
ProperOn M φ
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.rew
{ξ₁ : Type u_3}
{n₁ : ℕ}
{ξ₂ : Type u_4}
{n₂ : ℕ}
(ω : Rew ℒₒᵣ ξ₁ n₁ ξ₂ n₂)
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ₁ n₁ Γ → HierarchySymbol.Semiformula ξ₂ n₂ Γ
Equations
- One or more equations did not get rendered due to their size.
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.rew ω (φ.mkDelta ψ) = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.rew ω φ).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.rew ω ψ)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_rew
{ξ₁ : Type u_3}
{n₁ : ℕ}
{ξ₂ : Type u_4}
{n₂ : ℕ}
(ω : Rew ℒₒᵣ ξ₁ n₁ ξ₂ n₂)
{Γ : HierarchySymbol}
(φ : HierarchySymbol.Semiformula ξ₁ n₁ Γ)
:
(rew ω φ).val = (Rewriting.app ω) φ.val
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.rew
{M : Type u_2}
[ORingStruc M]
{m n₁ n₂ : ℕ}
{φ : { Γ := 𝚫, rank := m }.Semisentence n₁}
(h : ProperOn M φ)
(ω : Rew ℒₒᵣ Empty n₁ Empty n₂)
:
ProperOn M (Semiformula.rew ω φ)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.rew'
{M : Type u_2}
[ORingStruc M]
{m n₁ n₂ : ℕ}
{φ : { Γ := 𝚫, rank := m }.Semisentence n₁}
(h : ProperOn M φ)
(ω : Rew ℒₒᵣ Empty n₁ M n₂)
:
ProperWithParamOn M (Semiformula.rew ω φ)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.rew
{M : Type u_2}
[ORingStruc M]
{m n₁ n₂ : ℕ}
{φ : HierarchySymbol.Semiformula M n₁ { Γ := 𝚫, rank := m }}
(h : ProperWithParamOn M φ)
(f : Fin n₁ → Semiterm ℒₒᵣ M n₂)
:
ProperWithParamOn M (Semiformula.rew (Rew.substs f) φ)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.emb
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ n Γ → HierarchySymbol.Semiformula ξ n Γ
Equations
- One or more equations did not get rendered due to their size.
- (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ hp).emb = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi ((LO.FirstOrder.Semiformula.lMap LO.FirstOrder.Language.oringEmb) φ) ⋯
- (φ.mkDelta ψ).emb = φ.emb.mkDelta ψ.emb
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_emb
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
(φ : HierarchySymbol.Semiformula ξ n Γ)
:
φ.emb.val = (Semiformula.lMap Language.oringEmb) φ.val
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_emb
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
φ.emb.pi = φ.pi.emb
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_emb
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
φ.emb.sigma = φ.sigma.emb
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.emb_properWithParam
{n : ℕ}
{M : Type u_2}
[ORingStruc M]
{m : ℕ}
(φ : HierarchySymbol.Semiformula M n { Γ := 𝚫, rank := m })
:
ProperWithParamOn M φ.emb ↔ ProperWithParamOn M φ
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.extd
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ n Γ → HierarchySymbol.Semiformula ξ n Γ
Equations
- One or more equations did not get rendered due to their size.
- (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ a).extd = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi ((LO.FirstOrder.Semiformula.lMap LO.FirstOrder.Language.oringEmb) φ) ⋯
- (φ.mkDelta a).extd = φ.extd.mkDelta a.extd
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.eval_extd_iff
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
{M : Type u_2}
[ORingStruc M]
{e : Fin n → M}
{ε : ξ → M}
{φ : HierarchySymbol.Semiformula ξ n Γ}
:
(Semiformula.Evalm M e ε) φ.extd.val ↔ (Semiformula.Evalm M e ε) φ.val
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.extd
{n : ℕ}
{M : Type u_2}
[ORingStruc M]
{m : ℕ}
{φ : { Γ := 𝚫, rank := m }.Semisentence n}
(h : ProperOn M φ)
:
ProperOn M (Semiformula.extd φ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.extd
{n : ℕ}
{M : Type u_2}
[ORingStruc M]
{m : ℕ}
{φ : { Γ := 𝚫, rank := m }.Semisentence n}
(h : ProperOn M φ)
:
ProperOn M (Semiformula.extd φ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_extd_val
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
:
φ.extd.val = (Semiformula.lMap Language.oringEmb) φ.val
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_extd_val
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
φ.extd.val = (Semiformula.lMap Language.oringEmb) φ.val
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigmaZero
{ξ : Type u_1}
{k : ℕ}
{Γ : SigmaPiDelta}
(φ : HierarchySymbol.Semiformula ξ k { Γ := Γ, rank := 0 })
:
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ofZero
{ξ : Type u_1}
{k : ℕ}
{Γ' : SigmaPiDelta}
(φ : HierarchySymbol.Semiformula ξ k { Γ := Γ', rank := 0 })
(Γ : HierarchySymbol)
:
Equations
- φ.ofZero { Γ := LO.SigmaPiDelta.sigma, rank := rank } = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma φ.val ⋯
- φ.ofZero { Γ := LO.SigmaPiDelta.pi, rank := rank } = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ.val ⋯
- φ.ofZero { Γ := LO.SigmaPiDelta.delta, rank := rank } = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma φ.val ⋯).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ.val ⋯)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ofDeltaOne
{ξ : Type u_1}
{k : ℕ}
(φ : HierarchySymbol.Semiformula ξ k 𝚫₁)
(Γ : SigmaPiDelta)
(m : ℕ)
:
HierarchySymbol.Semiformula ξ k { Γ := Γ, rank := m + 1 }
Equations
- φ.ofDeltaOne LO.SigmaPiDelta.sigma x✝ = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma φ.sigma.val ⋯
- φ.ofDeltaOne LO.SigmaPiDelta.pi x✝ = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ.pi.val ⋯
- φ.ofDeltaOne LO.SigmaPiDelta.delta x✝ = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma φ.sigma.val ⋯).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi φ.pi.val ⋯)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ofZero_val
{ξ : Type u_1}
{n : ℕ}
{Γ' : SigmaPiDelta}
(φ : HierarchySymbol.Semiformula ξ n { Γ := Γ', rank := 0 })
(Γ : HierarchySymbol)
:
(φ.ofZero Γ).val = φ.val
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.of_zero
{M : Type u_2}
[ORingStruc M]
{Γ' : SigmaPiDelta}
{k : ℕ}
(φ : { Γ := Γ', rank := 0 }.Semisentence k)
(m : ℕ)
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.of_zero
{M : Type u_2}
[ORingStruc M]
{Γ' : SigmaPiDelta}
{k : ℕ}
(φ : HierarchySymbol.Semiformula M k { Γ := Γ', rank := 0 })
(m : ℕ)
:
ProperWithParamOn M (φ.ofZero { Γ := 𝚫, rank := m })
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.verum
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
Equations
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.verum = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma ⊤ ⋯
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.verum = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi ⊤ ⋯
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.verum = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma ⊤ ⋯).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi ⊤ ⋯)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.falsum
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
Equations
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.falsum = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma ⊥ ⋯
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.falsum = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi ⊥ ⋯
- LO.FirstOrder.Arith.HierarchySymbol.Semiformula.falsum = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma ⊥ ⋯).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi ⊥ ⋯)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.and
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ n Γ → HierarchySymbol.Semiformula ξ n Γ → HierarchySymbol.Semiformula ξ n Γ
Equations
- φ.and ψ = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (φ.val ⋏ ψ.val) ⋯
- φ.and ψ = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi (φ.val ⋏ ψ.val) ⋯
- φ.and ψ = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (φ.sigma.val ⋏ ψ.sigma.val) ⋯).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi (φ.pi.val ⋏ ψ.pi.val) ⋯)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.or
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ n Γ → HierarchySymbol.Semiformula ξ n Γ → HierarchySymbol.Semiformula ξ n Γ
Equations
- φ.or ψ = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (φ.val ⋎ ψ.val) ⋯
- φ.or ψ = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi (φ.val ⋎ ψ.val) ⋯
- φ.or ψ = (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (φ.sigma.val ⋎ ψ.sigma.val) ⋯).mkDelta (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi (φ.pi.val ⋎ ψ.pi.val) ⋯)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.negSigma
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m }
Equations
- φ.negSigma = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi (∼φ.val) ⋯
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.negPi
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m }
Equations
- φ.negPi = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (∼φ.val) ⋯
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.negDelta
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m }
Equations
- φ.negDelta = φ.pi.negPi.mkDelta φ.sigma.negSigma
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ball
{ξ : Type u_1}
{n : ℕ}
(t : Semiterm ℒₒᵣ ξ n)
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ (n + 1) Γ → HierarchySymbol.Semiformula ξ n Γ
Equations
- One or more equations did not get rendered due to their size.
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.bex
{ξ : Type u_1}
{n : ℕ}
(t : Semiterm ℒₒᵣ ξ n)
{Γ : HierarchySymbol}
:
HierarchySymbol.Semiformula ξ (n + 1) Γ → HierarchySymbol.Semiformula ξ n Γ
Equations
- One or more equations did not get rendered due to their size.
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.all
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚷, rank := m + 1 })
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m + 1 }
Equations
- φ.all = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkPi (∀' φ.val) ⋯
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ex
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚺, rank := m + 1 })
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m + 1 }
Equations
- φ.ex = LO.FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (∃' φ.val) ⋯
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instTop
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
Top (HierarchySymbol.Semiformula ξ n Γ)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instBot
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
Bot (HierarchySymbol.Semiformula ξ n Γ)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instWedge
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
Wedge (HierarchySymbol.Semiformula ξ n Γ)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instVee
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
Vee (HierarchySymbol.Semiformula ξ n Γ)
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instTildeMkDeltaSigmaPiDelta
{ξ : Type u_1}
{n m : ℕ}
:
Tilde (HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instLogicalConnectiveMkDeltaSigmaPiDelta
{ξ : Type u_1}
{n m : ℕ}
:
LogicalConnective (HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instExQuantifierMkSigmaSigmaPiDeltaHAddNatOfNat
{ξ : Type u_1}
{m : ℕ}
:
ExQuantifier fun (n : ℕ) => HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m + 1 }
instance
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.instUnivQuantifierMkPiSigmaPiDeltaHAddNatOfNat
{ξ : Type u_1}
{m : ℕ}
:
UnivQuantifier fun (n : ℕ) => HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m + 1 }
Equations
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.substSigma
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ 1 { Γ := 𝚺, rank := m + 1 })
(F : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚺, rank := m + 1 })
:
HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m + 1 }
Equations
- φ.substSigma F = (F ⋏ LO.FirstOrder.Arith.HierarchySymbol.Semiformula.rew (LO.FirstOrder.Rew.substs ![LO.FirstOrder.Semiterm.bvar 0]) φ).ex
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_verum
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_falsum
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_and
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
(φ ψ : HierarchySymbol.Semiformula ξ n Γ)
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_and
{ξ : Type u_1}
{n m : ℕ}
(φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_and
{ξ : Type u_1}
{n m : ℕ}
(φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_or
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
(φ ψ : HierarchySymbol.Semiformula ξ n Γ)
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_or
{ξ : Type u_1}
{n m : ℕ}
(φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.pi_or
{ξ : Type u_1}
{n m : ℕ}
(φ ψ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_negSigma
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚺, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_negPi
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚷, rank := m })
:
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_negDelta
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_negDelta
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.sigma_negPi
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ n { Γ := 𝚫, rank := m })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_ball
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
(t : Semiterm ℒₒᵣ ξ n)
(φ : HierarchySymbol.Semiformula ξ (n + 1) Γ)
:
(ball t φ).val = (“(∀[!!(Semiterm.bvar 0) < !!(Rew.bShift t)] !φ.val)”)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_bex
{ξ : Type u_1}
{n : ℕ}
{Γ : HierarchySymbol}
(t : Semiterm ℒₒᵣ ξ n)
(φ : HierarchySymbol.Semiformula ξ (n + 1) Γ)
:
(bex t φ).val = (“(∃[!!(Semiterm.bvar 0) < !!(Rew.bShift t)] !φ.val)”)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_exSigma
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚺, rank := m + 1 })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val_allPi
{ξ : Type u_1}
{n m : ℕ}
(φ : HierarchySymbol.Semiformula ξ (n + 1) { Γ := 𝚷, rank := m + 1 })
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.verum
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.falsum
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
:
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.and
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ ψ : { Γ := 𝚫, rank := m }.Semisentence k}
(hp : ProperOn M φ)
(hq : ProperOn M ψ)
:
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.or
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ ψ : { Γ := 𝚫, rank := m }.Semisentence k}
(hp : ProperOn M φ)
(hq : ProperOn M ψ)
:
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.neg
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ : { Γ := 𝚫, rank := m }.Semisentence k}
(hp : ProperOn M φ)
:
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.ball
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{t : Semiterm ℒₒᵣ Empty k}
{φ : { Γ := 𝚫, rank := m + 1 }.Semisentence (k + 1)}
(hp : ProperOn M φ)
:
ProperOn M (Semiformula.ball t φ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperOn.bex
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{t : Semiterm ℒₒᵣ Empty k}
{φ : { Γ := 𝚫, rank := m + 1 }.Semisentence (k + 1)}
(hp : ProperOn M φ)
:
ProperOn M (Semiformula.bex t φ)
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.verum
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
:
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.falsum
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
:
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.and
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ ψ : HierarchySymbol.Semiformula M k { Γ := 𝚫, rank := m }}
(hp : ProperWithParamOn M φ)
(hq : ProperWithParamOn M ψ)
:
ProperWithParamOn M (φ ⋏ ψ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.or
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ ψ : HierarchySymbol.Semiformula M k { Γ := 𝚫, rank := m }}
(hp : ProperWithParamOn M φ)
(hq : ProperWithParamOn M ψ)
:
ProperWithParamOn M (φ ⋎ ψ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.neg
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ : HierarchySymbol.Semiformula M k { Γ := 𝚫, rank := m }}
(hp : ProperWithParamOn M φ)
:
ProperWithParamOn M (∼φ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.eval_neg
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{φ : HierarchySymbol.Semiformula M k { Γ := 𝚫, rank := m }}
(hp : ProperWithParamOn M φ)
(e : Fin k → M)
:
(Semiformula.Evalm M e id) (∼φ).val ↔ ¬(Semiformula.Evalm M e id) φ.val
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.ball
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{t : Semiterm ℒₒᵣ M k}
{φ : HierarchySymbol.Semiformula M (k + 1) { Γ := 𝚫, rank := m }}
(hp : ProperWithParamOn M φ)
:
ProperWithParamOn M (Semiformula.ball t φ)
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.ProperWithParamOn.bex
{M : Type u_2}
[ORingStruc M]
{m k : ℕ}
{t : Semiterm ℒₒᵣ M k}
{φ : HierarchySymbol.Semiformula M (k + 1) { Γ := 𝚫, rank := m }}
(hp : ProperWithParamOn M φ)
:
ProperWithParamOn M (Semiformula.bex t φ)
def
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.graphDelta
{ξ : Type u_1}
{m k : ℕ}
(φ : HierarchySymbol.Semiformula ξ (k + 1) { Γ := 𝚺, rank := m })
:
HierarchySymbol.Semiformula ξ (k + 1) { Γ := 𝚫, rank := m }
@[simp]
theorem
LO.FirstOrder.Arith.HierarchySymbol.Semiformula.graphDelta_val
{ξ : Type u_1}
{m k : ℕ}
(φ : HierarchySymbol.Semiformula ξ (k + 1) { Γ := 𝚺, rank := m })
:
φ.graphDelta.val = φ.val