Documentation

Foundation.FirstOrder.Arith.Basic

class LO.ORingStruc (α : Type u_1) extends Zero α, One α, Add α, Mul α, LT α :
Type u_1
Instances
    @[simp]
    theorem LO.ORingStruc.zero_eq_zero {α : Type u_1} [ORingStruc α] :
    @[simp]
    theorem LO.ORingStruc.one_eq_one {α : Type u_1} [ORingStruc α] :
    @[simp]
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem LO.FirstOrder.Language.oringEmb_eq {L : Language} [L.ORing] :
      oringEmb.rel op(=) = op(=)
      @[simp]
      theorem LO.FirstOrder.Language.oringEmb_lt {L : Language} [L.ORing] :
      oringEmb.rel op(<) = op(<)
      @[simp]
      theorem LO.FirstOrder.Semiterm.oringEmb_zero {L : Language} [L.ORing] {ξ : Type u_1} {n : } :
      @[simp]
      theorem LO.FirstOrder.Semiterm.oringEmb_one {L : Language} [L.ORing] {ξ : Type u_1} {n : } :
      @[simp]
      theorem LO.FirstOrder.Semiterm.oringEmb_add {L : Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2Semiterm ℒₒᵣ ξ n) :
      lMap Language.oringEmb (op(+).operator v) = (‘(!!(lMap Language.oringEmb (v 0)) + !!(lMap Language.oringEmb (v 1)))’)
      @[simp]
      theorem LO.FirstOrder.Semiterm.oringEmb_mul {L : Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2Semiterm ℒₒᵣ ξ n) :
      lMap Language.oringEmb (op(*).operator v) = ‘(!!(lMap Language.oringEmb (v 0)) * !!(lMap Language.oringEmb (v 1)))’
      @[simp]
      theorem LO.FirstOrder.Semiformula.oringEmb_eq {L : Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2Semiterm ℒₒᵣ ξ n) :
      @[simp]
      theorem LO.FirstOrder.Semiformula.oringEmb_lt {L : Language} [L.ORing] {ξ : Type u_1} {n : } (v : Fin 2Semiterm ℒₒᵣ ξ n) :
      @[reducible, inline]
      Equations
      Instances For
        Instances
          def LO.FirstOrder.Semiformula.ballLTSucc {L : Language} [L.LT] [L.Zero] [L.One] [L.Add] {ξ : Type u_2} {n : } (t : Semiterm L ξ n) (φ : Semiformula L ξ (n + 1)) :
          Equations
          Instances For
            def LO.FirstOrder.Semiformula.bexLTSucc {L : Language} [L.LT] [L.Zero] [L.One] [L.Add] {ξ : Type u_2} {n : } (t : Semiterm L ξ n) (φ : Semiformula L ξ (n + 1)) :
            Equations
            Instances For
              theorem LO.FirstOrder.Semiformula.eval_ballLTSucc {ξ : Type u_3} {n : } {L : Language} [L.LT] [L.Zero] [L.One] [L.Add] {M : Type u_1} {s : Structure L M} [LT M] [One M] [Add M] [Structure.LT L M] [Structure.One L M] [Structure.Add L M] {t : Semiterm L ξ n} {φ : Semiformula L ξ (n + 1)} {e : Fin nM} {ε : ξM} :
              (Eval s e ε) (ballLTSucc t φ) x < Semiterm.val s e ε t + 1, (Eval s (x :> e) ε) φ
              theorem LO.FirstOrder.Semiformula.eval_bexLTSucc {ξ : Type u_3} {n : } {L : Language} [L.LT] [L.Zero] [L.One] [L.Add] {M : Type u_1} {s : Structure L M} [LT M] [One M] [Add M] [Structure.LT L M] [Structure.One L M] [Structure.Add L M] {t : Semiterm L ξ n} {φ : Semiformula L ξ (n + 1)} {e : Fin nM} {ε : ξM} :
              (Eval s e ε) (bexLTSucc t φ) x < Semiterm.val s e ε t + 1, (Eval s (x :> e) ε) φ
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Instances
                    theorem LO.FirstOrder.Arith.consequence_of {L : Language} [L.ORing] (T : Theory L) [𝐄𝐐 T] (φ : SyntacticFormula L) (H : ∀ (M : Type (max u w)) [inst : ORingStruc M] [inst_1 : Structure L M] [inst_2 : Structure.ORing L M] [inst_3 : M ⊧ₘ* T], M ⊧ₘ φ) :
                    T φ
                    inductive LO.FirstOrder.Theory.EQ' {L : Language} [L.Eq] :
                    Instances For