- term : LO.FirstOrder.Semiterm L Empty n
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.FirstOrder.Semiterm.fn f = { term := LO.FirstOrder.Semiterm.func f fun (x : Fin k) => LO.FirstOrder.Semiterm.bvar x }
Instances For
Equations
- LO.FirstOrder.Semiterm.Operator.equiv = { toFun := LO.FirstOrder.Semiterm.Operator.term, invFun := LO.FirstOrder.Semiterm.Operator.mk, left_inv := ⋯, right_inv := ⋯ }
Instances For
def
LO.FirstOrder.Semiterm.Operator.operator
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n arity : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L arity)
(v : Fin arity → LO.FirstOrder.Semiterm L ξ n)
:
LO.FirstOrder.Semiterm L ξ n
Equations
- o.operator v = (LO.FirstOrder.Rew.substs v) (LO.FirstOrder.Rew.emb o.term)
Instances For
@[reducible, inline]
abbrev
LO.FirstOrder.Semiterm.Operator.const
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
(c : LO.FirstOrder.Semiterm.Const L)
:
LO.FirstOrder.Semiterm L ξ n
Instances For
instance
LO.FirstOrder.Semiterm.Operator.instCoeConst
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
:
Coe (LO.FirstOrder.Semiterm.Const L) (LO.FirstOrder.Semiterm L ξ n)
Equations
- LO.FirstOrder.Semiterm.Operator.instCoeConst = { coe := LO.FirstOrder.Semiterm.Operator.const }
def
LO.FirstOrder.Semiterm.Operator.comp
{L : LO.FirstOrder.Language}
{k l : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L k)
(w : Fin k → LO.FirstOrder.Semiterm.Operator L l)
:
Instances For
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.operator_comp
{L : LO.FirstOrder.Language}
{k l : ℕ}
{ξ : Type u_1}
{n : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L k)
(w : Fin k → LO.FirstOrder.Semiterm.Operator L l)
(v : Fin l → LO.FirstOrder.Semiterm L ξ n)
:
Equations
- LO.FirstOrder.Semiterm.Operator.bvar x = { term := LO.FirstOrder.Semiterm.bvar x }
Instances For
theorem
LO.FirstOrder.Semiterm.Operator.operator_bvar
{L : LO.FirstOrder.Language}
{k : ℕ}
{ξ : Type u_1}
{n : ℕ}
(x : Fin k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ n)
:
(LO.FirstOrder.Semiterm.Operator.bvar x).operator v = v x
theorem
LO.FirstOrder.Semiterm.Operator.bv_operator
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n k : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ (n + 1))
:
theorem
LO.FirstOrder.Semiterm.Operator.positive_operator_iff
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n k : ℕ}
{o : LO.FirstOrder.Semiterm.Operator L k}
{v : Fin k → LO.FirstOrder.Semiterm L ξ (n + 1)}
:
(o.operator v).Positive ↔ ∀ i ∈ o.term.bv, (v i).Positive
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.positive_const
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
(c : LO.FirstOrder.Semiterm.Const L)
:
(LO.FirstOrder.Semiterm.Operator.const c).Positive
def
LO.FirstOrder.Semiterm.Operator.foldr
{L : LO.FirstOrder.Language}
{k : ℕ}
(f : LO.FirstOrder.Semiterm.Operator L 2)
(z : LO.FirstOrder.Semiterm.Operator L k)
:
Instances For
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.foldr_nil
{L : LO.FirstOrder.Language}
{k : ℕ}
(f : LO.FirstOrder.Semiterm.Operator L 2)
(z : LO.FirstOrder.Semiterm.Operator L k)
:
f.foldr z [] = z
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.operator_foldr_cons
{L : LO.FirstOrder.Language}
{k : ℕ}
{ξ : Type u_1}
{n : ℕ}
(f : LO.FirstOrder.Semiterm.Operator L 2)
(z o : LO.FirstOrder.Semiterm.Operator L k)
(os : List (LO.FirstOrder.Semiterm.Operator L k))
(v : Fin k → LO.FirstOrder.Semiterm L ξ n)
:
def
LO.FirstOrder.Semiterm.Operator.iterr
{L : LO.FirstOrder.Language}
(f : LO.FirstOrder.Semiterm.Operator L 2)
(z : LO.FirstOrder.Semiterm.Const L)
(n : ℕ)
:
Equations
- f.iterr z 0 = z
- f.iterr z n.succ = f.foldr (LO.FirstOrder.Semiterm.Operator.bvar 0) (List.ofFn fun (x : Fin n) => LO.FirstOrder.Semiterm.Operator.bvar x.succ)
Instances For
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.iterr_zero
{L : LO.FirstOrder.Language}
(f : LO.FirstOrder.Semiterm.Operator L 2)
(z : LO.FirstOrder.Semiterm.Const L)
:
f.iterr z 0 = z
- zero : LO.FirstOrder.Semiterm.Const L
Instances
- one : LO.FirstOrder.Semiterm.Const L
Instances
- add : LO.FirstOrder.Semiterm.Operator L 2
Instances
- mul : LO.FirstOrder.Semiterm.Operator L 2
Instances
- exp : LO.FirstOrder.Semiterm.Operator L 1
Instances
- sub : LO.FirstOrder.Semiterm.Operator L 2
Instances
- div : LO.FirstOrder.Semiterm.Operator L 2
Instances
- star : LO.FirstOrder.Semiterm.Const L
Instances
class
LO.FirstOrder.Semiterm.Operator.GoedelNumber
(L : LO.FirstOrder.Language)
(α : Type u_1)
:
Type (max u_1 u_2)
- goedelNumber : α → LO.FirstOrder.Semiterm.Const L
Instances
Equations
- LO.FirstOrder.Semiterm.Operator.«termOp(0)» = Lean.ParserDescr.node `LO.FirstOrder.Semiterm.Operator.«termOp(0)» 1024 (Lean.ParserDescr.symbol "op(0)")
Instances For
Equations
- LO.FirstOrder.Semiterm.Operator.«termOp(1)» = Lean.ParserDescr.node `LO.FirstOrder.Semiterm.Operator.«termOp(1)» 1024 (Lean.ParserDescr.symbol "op(1)")
Instances For
Equations
- LO.FirstOrder.Semiterm.Operator.«termOp(+)» = Lean.ParserDescr.node `LO.FirstOrder.Semiterm.Operator.«termOp(+)» 1024 (Lean.ParserDescr.symbol "op(+)")
Instances For
Equations
- LO.FirstOrder.Semiterm.Operator.«termOp(*)» = Lean.ParserDescr.node `LO.FirstOrder.Semiterm.Operator.«termOp(*)» 1024 (Lean.ParserDescr.symbol "op(*)")
Instances For
Equations
- LO.FirstOrder.Semiterm.Operator.instZeroOfZero = { zero := { term := LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Zero.zero ![] } }
Equations
- LO.FirstOrder.Semiterm.Operator.instOneOfOne = { one := { term := LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.One.one ![] } }
Equations
- LO.FirstOrder.Semiterm.Operator.instAddOfAdd = { add := { term := LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Add.add LO.FirstOrder.Semiterm.bvar } }
Equations
- LO.FirstOrder.Semiterm.Operator.instMulOfMul = { mul := { term := LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Mul.mul LO.FirstOrder.Semiterm.bvar } }
Equations
- LO.FirstOrder.Semiterm.Operator.instExpOfExp = { exp := { term := LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Exp.exp LO.FirstOrder.Semiterm.bvar } }
Equations
- LO.FirstOrder.Semiterm.Operator.instStarOfStar = { star := { term := LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Star.star ![] } }
theorem
LO.FirstOrder.Semiterm.Operator.Zero.term_eq
{L : LO.FirstOrder.Language}
[L.Zero]
:
op(0).term = LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Zero.zero ![]
theorem
LO.FirstOrder.Semiterm.Operator.One.term_eq
{L : LO.FirstOrder.Language}
[L.One]
:
op(1).term = LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.One.one ![]
theorem
LO.FirstOrder.Semiterm.Operator.Add.term_eq
{L : LO.FirstOrder.Language}
[L.Add]
:
op(+).term = LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Add.add LO.FirstOrder.Semiterm.bvar
theorem
LO.FirstOrder.Semiterm.Operator.Mul.term_eq
{L : LO.FirstOrder.Language}
[L.Mul]
:
op(*).term = LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Mul.mul LO.FirstOrder.Semiterm.bvar
theorem
LO.FirstOrder.Semiterm.Operator.Exp.term_eq
{L : LO.FirstOrder.Language}
[L.Exp]
:
LO.FirstOrder.Semiterm.Operator.Exp.exp.term = LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Exp.exp LO.FirstOrder.Semiterm.bvar
theorem
LO.FirstOrder.Semiterm.Operator.Star.term_eq
{L : LO.FirstOrder.Language}
[L.Star]
:
LO.FirstOrder.Semiterm.Operator.Star.star.term = LO.FirstOrder.Semiterm.func LO.FirstOrder.Language.Star.star ![]
def
LO.FirstOrder.Semiterm.Operator.numeral
(L : LO.FirstOrder.Language)
[LO.FirstOrder.Semiterm.Operator.Zero L]
[LO.FirstOrder.Semiterm.Operator.One L]
[LO.FirstOrder.Semiterm.Operator.Add L]
:
Equations
- LO.FirstOrder.Semiterm.Operator.numeral L 0 = op(0)
- LO.FirstOrder.Semiterm.Operator.numeral L n.succ = op(+).foldr op(1) (List.replicate n op(1))
Instances For
theorem
LO.FirstOrder.Semiterm.Operator.numeral_succ
{L : LO.FirstOrder.Language}
[hz : LO.FirstOrder.Semiterm.Operator.Zero L]
[ho : LO.FirstOrder.Semiterm.Operator.One L]
[ha : LO.FirstOrder.Semiterm.Operator.Add L]
{z : ℕ}
:
z ≠ 0 →
LO.FirstOrder.Semiterm.Operator.numeral L (z + 1) = op(+).comp ![LO.FirstOrder.Semiterm.Operator.numeral L z, op(1)]
theorem
LO.FirstOrder.Semiterm.Operator.numeral_add_two
{L : LO.FirstOrder.Language}
[hz : LO.FirstOrder.Semiterm.Operator.Zero L]
[ho : LO.FirstOrder.Semiterm.Operator.One L]
[ha : LO.FirstOrder.Semiterm.Operator.Add L]
{z : ℕ}
:
LO.FirstOrder.Semiterm.Operator.numeral L (z + 2) = op(+).comp ![LO.FirstOrder.Semiterm.Operator.numeral L (z + 1), op(1)]
@[reducible, inline]
abbrev
LO.FirstOrder.Semiterm.Operator.encode
(L : LO.FirstOrder.Language)
[LO.FirstOrder.Semiterm.Operator.Zero L]
[LO.FirstOrder.Semiterm.Operator.One L]
[LO.FirstOrder.Semiterm.Operator.Add L]
{α : Type u_1}
[Encodable α]
(a : α)
:
Equations
Instances For
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.Add.positive_iff
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Add]
(t u : LO.FirstOrder.Semiterm L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.Mul.positive_iff
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Mul]
(t u : LO.FirstOrder.Semiterm L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.Exp.positive_iff
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Exp]
(t : LO.FirstOrder.Semiterm L ξ (n + 1))
:
(LO.FirstOrder.Semiterm.Operator.Exp.exp.operator ![t]).Positive ↔ t.Positive
def
LO.FirstOrder.Semiterm.Operator.npow
(L : LO.FirstOrder.Language)
[LO.FirstOrder.Semiterm.Operator.One L]
[LO.FirstOrder.Semiterm.Operator.Mul L]
(n : ℕ)
:
Equations
Instances For
theorem
LO.FirstOrder.Semiterm.Operator.npow_succ
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiterm.Operator.One L]
[LO.FirstOrder.Semiterm.Operator.Mul L]
{n : ℕ}
:
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.npow_positive_iff
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[LO.FirstOrder.Semiterm.Operator.One L]
[L.Mul]
(t : LO.FirstOrder.Semiterm L ξ (n + 1))
(k : ℕ)
:
((LO.FirstOrder.Semiterm.Operator.npow L k).operator ![t]).Positive ↔ k = 0 ∨ t.Positive
@[reducible, inline]
abbrev
LO.FirstOrder.Semiterm.Operator.GoedelNumber.goedelNumber'
{L : LO.FirstOrder.Language}
{α : Type u_2}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L α]
{ξ : Type u_3}
{n : ℕ}
(a : α)
:
LO.FirstOrder.Semiterm L ξ n
Equations
Instances For
instance
LO.FirstOrder.Semiterm.Operator.GoedelNumber.instGoedelQuote
{L : LO.FirstOrder.Language}
{α : Type u_2}
[LO.FirstOrder.Semiterm.Operator.GoedelNumber L α]
{ξ : Type u_3}
{n : ℕ}
:
LO.GoedelQuote α (LO.FirstOrder.Semiterm L ξ n)
Equations
- LO.FirstOrder.Semiterm.Operator.GoedelNumber.instGoedelQuote = { quote := LO.FirstOrder.Semiterm.Operator.GoedelNumber.goedelNumber' }
def
LO.FirstOrder.Semiterm.Operator.GoedelNumber.ofEncodable
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiterm.Operator.Zero L]
[LO.FirstOrder.Semiterm.Operator.One L]
[LO.FirstOrder.Semiterm.Operator.Add L]
{α : Type u_1}
[Encodable α]
:
Equations
- LO.FirstOrder.Semiterm.Operator.GoedelNumber.ofEncodable = { goedelNumber := LO.FirstOrder.Semiterm.Operator.encode L }
Instances For
@[simp]
theorem
LO.FirstOrder.Semiterm.complexity_zero
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Zero]
:
(LO.FirstOrder.Semiterm.Operator.const op(0)).complexity = 1
@[simp]
theorem
LO.FirstOrder.Semiterm.complexity_one
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.One]
:
(LO.FirstOrder.Semiterm.Operator.const op(1)).complexity = 1
@[simp]
theorem
LO.FirstOrder.Semiterm.complexity_add
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Add]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiterm.complexity_mul
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Mul]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
def
LO.FirstOrder.Semiterm.Operator.val
{L : LO.FirstOrder.Language}
{k : ℕ}
{M : Type w}
[s : LO.FirstOrder.Structure L M]
(o : LO.FirstOrder.Semiterm.Operator L k)
(v : Fin k → M)
:
M
Equations
- o.val v = LO.FirstOrder.Semiterm.val s v Empty.elim o.term
Instances For
theorem
LO.FirstOrder.Semiterm.val_operator
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n✝ : ℕ}
{e : Fin n✝ → M}
{ξ✝ : Type u_1}
{ε : ξ✝ → M}
{k : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ✝ n✝)
:
LO.FirstOrder.Semiterm.val s e ε (o.operator v) = o.val fun (x : Fin k) => LO.FirstOrder.Semiterm.val s e ε (v x)
@[simp]
theorem
LO.FirstOrder.Semiterm.val_const
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n✝ : ℕ}
{e : Fin n✝ → M}
{ξ✝ : Type u_1}
{ε : ξ✝ → M}
(o : LO.FirstOrder.Semiterm.Const L)
:
@[simp]
theorem
LO.FirstOrder.Semiterm.val_operator₀
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n✝ : ℕ}
{e : Fin n✝ → M}
{ξ✝ : Type u_1}
{ε : ξ✝ → M}
{v : Fin 0 → LO.FirstOrder.Semiterm L ξ✝ n✝}
(o : LO.FirstOrder.Semiterm.Const L)
:
@[simp]
theorem
LO.FirstOrder.Semiterm.val_operator₁
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n✝ : ℕ}
{e : Fin n✝ → M}
{ξ✝ : Type u_1}
{ε : ξ✝ → M}
{t : LO.FirstOrder.Semiterm L ξ✝ n✝}
(o : LO.FirstOrder.Semiterm.Operator L 1)
:
LO.FirstOrder.Semiterm.val s e ε (o.operator ![t]) = o.val ![LO.FirstOrder.Semiterm.val s e ε t]
@[simp]
theorem
LO.FirstOrder.Semiterm.val_operator₂
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n✝ : ℕ}
{e : Fin n✝ → M}
{ξ✝ : Type u_1}
{ε : ξ✝ → M}
(o : LO.FirstOrder.Semiterm.Operator L 2)
(t u : LO.FirstOrder.Semiterm L ξ✝ n✝)
:
LO.FirstOrder.Semiterm.val s e ε (o.operator ![t, u]) = o.val ![LO.FirstOrder.Semiterm.val s e ε t, LO.FirstOrder.Semiterm.val s e ε u]
theorem
LO.FirstOrder.Semiterm.Operator.val_comp
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{k m : ℕ}
(o₁ : LO.FirstOrder.Semiterm.Operator L k)
(o₂ : Fin k → LO.FirstOrder.Semiterm.Operator L m)
(v : Fin m → M)
:
@[simp]
theorem
LO.FirstOrder.Semiterm.Operator.val_bvar
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n : ℕ}
(x : Fin n)
(v : Fin n → M)
:
(LO.FirstOrder.Semiterm.Operator.bvar x).val v = v x
- sentence : LO.FirstOrder.Semisentence L n
Instances For
@[reducible, inline]
Equations
Instances For
def
LO.FirstOrder.Semiformula.Operator.operator
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n arity : ℕ}
(o : LO.FirstOrder.Semiformula.Operator L arity)
(v : Fin arity → LO.FirstOrder.Semiterm L ξ n)
:
Instances For
def
LO.FirstOrder.Semiformula.Operator.const
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
(c : LO.FirstOrder.Semiformula.Const L)
:
Equations
Instances For
instance
LO.FirstOrder.Semiformula.Operator.instCoeConst
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
:
Equations
- LO.FirstOrder.Semiformula.Operator.instCoeConst = { coe := LO.FirstOrder.Semiformula.Operator.const }
def
LO.FirstOrder.Semiformula.Operator.comp
{L : LO.FirstOrder.Language}
{k l : ℕ}
(o : LO.FirstOrder.Semiformula.Operator L k)
(w : Fin k → LO.FirstOrder.Semiterm.Operator L l)
:
Instances For
theorem
LO.FirstOrder.Semiformula.Operator.operator_comp
{L : LO.FirstOrder.Language}
{k l : ℕ}
{ξ : Type u_1}
{n : ℕ}
(o : LO.FirstOrder.Semiformula.Operator L k)
(w : Fin k → LO.FirstOrder.Semiterm.Operator L l)
(v : Fin l → LO.FirstOrder.Semiterm L ξ n)
:
def
LO.FirstOrder.Semiformula.Operator.and
{L : LO.FirstOrder.Language}
{k : ℕ}
(o₁ o₂ : LO.FirstOrder.Semiformula.Operator L k)
:
Instances For
def
LO.FirstOrder.Semiformula.Operator.or
{L : LO.FirstOrder.Language}
{k : ℕ}
(o₁ o₂ : LO.FirstOrder.Semiformula.Operator L k)
:
Instances For
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.operator_and
{L : LO.FirstOrder.Language}
{k : ℕ}
{ξ : Type u_1}
{n : ℕ}
(o₁ o₂ : LO.FirstOrder.Semiformula.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.operator_or
{L : LO.FirstOrder.Language}
{k : ℕ}
{ξ : Type u_1}
{n : ℕ}
(o₁ o₂ : LO.FirstOrder.Semiformula.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ n)
:
- eq : LO.FirstOrder.Semiformula.Operator L 2
Instances
- lt : LO.FirstOrder.Semiformula.Operator L 2
Instances
- le : LO.FirstOrder.Semiformula.Operator L 2
Instances
- mem : LO.FirstOrder.Semiformula.Operator L 2
Instances
Equations
- LO.FirstOrder.Semiformula.Operator.«termOp(=)» = Lean.ParserDescr.node `LO.FirstOrder.Semiformula.Operator.«termOp(=)» 1024 (Lean.ParserDescr.symbol "op(=)")
Instances For
Equations
- LO.FirstOrder.Semiformula.Operator.«termOp(<)» = Lean.ParserDescr.node `LO.FirstOrder.Semiformula.Operator.«termOp(<)» 1024 (Lean.ParserDescr.symbol "op(<)")
Instances For
Equations
- LO.FirstOrder.Semiformula.Operator.«termOp(≤)» = Lean.ParserDescr.node `LO.FirstOrder.Semiformula.Operator.«termOp(≤)» 1024 (Lean.ParserDescr.symbol "op(≤)")
Instances For
Equations
- LO.FirstOrder.Semiformula.Operator.«termOp(∈)» = Lean.ParserDescr.node `LO.FirstOrder.Semiformula.Operator.«termOp(∈)» 1024 (Lean.ParserDescr.symbol "op(∈)")
Instances For
Equations
- LO.FirstOrder.Semiformula.Operator.instEqOfEq = { eq := { sentence := LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.Eq.eq LO.FirstOrder.Semiterm.bvar } }
Equations
- LO.FirstOrder.Semiformula.Operator.instLTOfLT = { lt := { sentence := LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.LT.lt LO.FirstOrder.Semiterm.bvar } }
theorem
LO.FirstOrder.Semiformula.Operator.Eq.sentence_eq
{L : LO.FirstOrder.Language}
[L.Eq]
:
op(=).sentence = LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.Eq.eq LO.FirstOrder.Semiterm.bvar
theorem
LO.FirstOrder.Semiformula.Operator.LT.sentence_eq
{L : LO.FirstOrder.Language}
[L.LT]
:
op(<).sentence = LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.LT.lt LO.FirstOrder.Semiterm.bvar
theorem
LO.FirstOrder.Semiformula.Operator.LE.sentence_eq
{L : LO.FirstOrder.Language}
[L.Eq]
[L.LT]
:
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.Eq.equal_inj
{L : LO.FirstOrder.Language}
{ξ₂ : Type u_1}
{n₂ : ℕ}
[L.Eq]
{t₁ t₂ u₁ u₂ : LO.FirstOrder.Semiterm L ξ₂ n₂}
:
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.LT.lt_inj
{L : LO.FirstOrder.Language}
{ξ₂ : Type u_1}
{n₂ : ℕ}
[L.LT]
{t₁ t₂ u₁ u₂ : LO.FirstOrder.Semiterm L ξ₂ n₂}
:
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.LE.le_inj
{L : LO.FirstOrder.Language}
{ξ₂ : Type u_1}
{n₂ : ℕ}
[L.Eq]
[L.LT]
{t₁ t₂ u₁ u₂ : LO.FirstOrder.Semiterm L ξ₂ n₂}
:
theorem
LO.FirstOrder.Semiformula.Operator.lt_def
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.LT]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
op(<).operator ![t, u] = LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.LT.lt ![t, u]
theorem
LO.FirstOrder.Semiformula.Operator.eq_def
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Eq]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
op(=).operator ![t, u] = LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.Eq.eq ![t, u]
theorem
LO.FirstOrder.Semiformula.Operator.le_def
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Eq]
[L.LT]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
op(≤).operator ![t, u] = LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.Eq.eq ![t, u] ⋎ LO.FirstOrder.Semiformula.rel LO.FirstOrder.Language.LT.lt ![t, u]
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.Eq.open
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Eq]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
(op(=).operator ![t, u]).Open
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.LT.open
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.LT]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
(op(<).operator ![t, u]).Open
@[simp]
theorem
LO.FirstOrder.Semiformula.Operator.LE.open
{L : LO.FirstOrder.Language}
{ξ : Type u_1}
{n : ℕ}
[L.Eq]
[L.LT]
(t u : LO.FirstOrder.Semiterm L ξ n)
:
(op(≤).operator ![t, u]).Open
def
LO.FirstOrder.Semiformula.Operator.val
{L : LO.FirstOrder.Language}
{M : Type w}
[s : LO.FirstOrder.Structure L M]
{k : ℕ}
(o : LO.FirstOrder.Semiformula.Operator L k)
(v : Fin k → M)
:
Equations
- o.val v = (LO.FirstOrder.Semiformula.Eval s v Empty.elim) o.sentence
Instances For
@[simp]
theorem
LO.FirstOrder.Semiformula.val_operator_and
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{k : ℕ}
{o₁ o₂ : LO.FirstOrder.Semiformula.Operator L k}
{v : Fin k → M}
:
@[simp]
theorem
LO.FirstOrder.Semiformula.val_operator_or
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{k : ℕ}
{o₁ o₂ : LO.FirstOrder.Semiformula.Operator L k}
{v : Fin k → M}
:
theorem
LO.FirstOrder.Semiformula.eval_operator
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{ξ : Type u_1}
{n : ℕ}
{e : Fin n → M}
{ε : ξ → M}
{k : ℕ}
{o : LO.FirstOrder.Semiformula.Operator L k}
{v : Fin k → LO.FirstOrder.Semiterm L ξ n}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (o.operator v) ↔ o.val fun (i : Fin k) => LO.FirstOrder.Semiterm.val s e ε (v i)
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_operator₀
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{n✝ : ℕ}
{e : Fin n✝ → M}
{ξ✝ : Type u_1}
{ε : ξ✝ → M}
{o : LO.FirstOrder.Semiformula.Const L}
{v : Fin 0 → LO.FirstOrder.Semiterm L ξ✝ n✝}
:
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_operator₁
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{ξ : Type u_1}
{n : ℕ}
{e : Fin n → M}
{ε : ξ → M}
{o : LO.FirstOrder.Semiformula.Operator L 1}
{t : LO.FirstOrder.Semiterm L ξ n}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (o.operator ![t]) ↔ o.val ![LO.FirstOrder.Semiterm.val s e ε t]
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_operator₂
{L : LO.FirstOrder.Language}
{M : Type w}
{s : LO.FirstOrder.Structure L M}
{ξ : Type u_1}
{n : ℕ}
{e : Fin n → M}
{ε : ξ → M}
{o : LO.FirstOrder.Semiformula.Operator L 2}
{t₁ t₂ : LO.FirstOrder.Semiterm L ξ n}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (o.operator ![t₁, t₂]) ↔ o.val ![LO.FirstOrder.Semiterm.val s e ε t₁, LO.FirstOrder.Semiterm.val s e ε t₂]
def
LO.FirstOrder.Semiformula.ballLT
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
[LO.FirstOrder.Semiformula.Operator.LT L]
(t : LO.FirstOrder.Semiterm L ξ n)
(φ : LO.FirstOrder.Semiformula L ξ (n + 1))
:
Equations
- LO.FirstOrder.Semiformula.ballLT t φ = ∀[op(<).operator ![LO.FirstOrder.Semiterm.bvar 0, LO.FirstOrder.Rew.bShift t]] φ
Instances For
def
LO.FirstOrder.Semiformula.bexLT
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
[LO.FirstOrder.Semiformula.Operator.LT L]
(t : LO.FirstOrder.Semiterm L ξ n)
(φ : LO.FirstOrder.Semiformula L ξ (n + 1))
:
Equations
- LO.FirstOrder.Semiformula.bexLT t φ = ∃[op(<).operator ![LO.FirstOrder.Semiterm.bvar 0, LO.FirstOrder.Rew.bShift t]] φ
Instances For
def
LO.FirstOrder.Semiformula.ballLE
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
[LO.FirstOrder.Semiformula.Operator.LE L]
(t : LO.FirstOrder.Semiterm L ξ n)
(φ : LO.FirstOrder.Semiformula L ξ (n + 1))
:
Equations
- LO.FirstOrder.Semiformula.ballLE t φ = ∀[op(≤).operator ![LO.FirstOrder.Semiterm.bvar 0, LO.FirstOrder.Rew.bShift t]] φ
Instances For
def
LO.FirstOrder.Semiformula.bexLE
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
[LO.FirstOrder.Semiformula.Operator.LE L]
(t : LO.FirstOrder.Semiterm L ξ n)
(φ : LO.FirstOrder.Semiformula L ξ (n + 1))
:
Equations
- LO.FirstOrder.Semiformula.bexLE t φ = ∃[op(≤).operator ![LO.FirstOrder.Semiterm.bvar 0, LO.FirstOrder.Rew.bShift t]] φ
Instances For
def
LO.FirstOrder.Semiformula.ballMem
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
[LO.FirstOrder.Semiformula.Operator.Mem L]
(t : LO.FirstOrder.Semiterm L ξ n)
(φ : LO.FirstOrder.Semiformula L ξ (n + 1))
:
Equations
- LO.FirstOrder.Semiformula.ballMem t φ = ∀[op(∈).operator ![LO.FirstOrder.Semiterm.bvar 0, LO.FirstOrder.Rew.bShift t]] φ
Instances For
def
LO.FirstOrder.Semiformula.bexMem
{L : LO.FirstOrder.Language}
{ξ : Type u_2}
{n : ℕ}
[LO.FirstOrder.Semiformula.Operator.Mem L]
(t : LO.FirstOrder.Semiterm L ξ n)
(φ : LO.FirstOrder.Semiformula L ξ (n + 1))
:
Equations
- LO.FirstOrder.Semiformula.bexMem t φ = ∃[op(∈).operator ![LO.FirstOrder.Semiterm.bvar 0, LO.FirstOrder.Rew.bShift t]] φ
Instances For
theorem
LO.FirstOrder.Rew.operator
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
{k : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ₁ n₁)
:
theorem
LO.FirstOrder.Rew.operator'
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
{k : ℕ}
(o : LO.FirstOrder.Semiterm.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ₁ n₁)
:
@[simp]
theorem
LO.FirstOrder.Rew.finitary0
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiterm.Operator L 0)
(v : Fin 0 → LO.FirstOrder.Semiterm L ξ₁ n₁)
:
ω (o.operator v) = o.operator ![]
@[simp]
theorem
LO.FirstOrder.Rew.finitary1
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiterm.Operator L 1)
(t : LO.FirstOrder.Semiterm L ξ₁ n₁)
:
ω (o.operator ![t]) = o.operator ![ω t]
@[simp]
theorem
LO.FirstOrder.Rew.finitary2
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiterm.Operator L 2)
(t₁ t₂ : LO.FirstOrder.Semiterm L ξ₁ n₁)
:
ω (o.operator ![t₁, t₂]) = o.operator ![ω t₁, ω t₂]
@[simp]
theorem
LO.FirstOrder.Rew.finitary3
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiterm.Operator L 3)
(t₁ t₂ t₃ : LO.FirstOrder.Semiterm L ξ₁ n₁)
:
ω (o.operator ![t₁, t₂, t₃]) = o.operator ![ω t₁, ω t₂, ω t₃]
@[simp]
theorem
LO.FirstOrder.Rew.const
{ξ₁ : Type u_2}
{n₁ : ℕ}
{ξ₂ : Type u_1}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(c : LO.FirstOrder.Semiterm.Const L)
:
theorem
LO.FirstOrder.Rew.hom_operator
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
{k : ℕ}
(o : LO.FirstOrder.Semiformula.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ₁ n₁)
:
(LO.FirstOrder.Rewriting.app ω) (o.operator v) = o.operator fun (i : Fin k) => ω (v i)
theorem
LO.FirstOrder.Rew.hom_operator'
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
{k : ℕ}
(o : LO.FirstOrder.Semiformula.Operator L k)
(v : Fin k → LO.FirstOrder.Semiterm L ξ₁ n₁)
:
(LO.FirstOrder.Rewriting.app ω) (o.operator v) = o.operator (⇑ω ∘ v)
@[simp]
theorem
LO.FirstOrder.Rew.hom_finitary0
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiformula.Operator L 0)
(v : Fin 0 → LO.FirstOrder.Semiterm L ξ₁ n₁)
:
(LO.FirstOrder.Rewriting.app ω) (o.operator v) = o.operator ![]
@[simp]
theorem
LO.FirstOrder.Rew.hom_finitary1
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiformula.Operator L 1)
(t : LO.FirstOrder.Semiterm L ξ₁ n₁)
:
(LO.FirstOrder.Rewriting.app ω) (o.operator ![t]) = o.operator ![ω t]
@[simp]
theorem
LO.FirstOrder.Rew.hom_finitary2
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiformula.Operator L 2)
(t₁ t₂ : LO.FirstOrder.Semiterm L ξ₁ n₁)
:
(LO.FirstOrder.Rewriting.app ω) (o.operator ![t₁, t₂]) = o.operator ![ω t₁, ω t₂]
@[simp]
theorem
LO.FirstOrder.Rew.hom_finitary3
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
(o : LO.FirstOrder.Semiformula.Operator L 3)
(t₁ t₂ t₃ : LO.FirstOrder.Semiterm L ξ₁ n₁)
:
(LO.FirstOrder.Rewriting.app ω) (o.operator ![t₁, t₂, t₃]) = o.operator ![ω t₁, ω t₂, ω t₃]
@[simp]
theorem
LO.FirstOrder.Rew.hom_const
{ξ₁ : Type u_2}
{n₁ : ℕ}
{ξ₂ : Type u_1}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
{c : LO.FirstOrder.Semiformula.Const L}
:
theorem
LO.FirstOrder.Rew.eq_equal_iff
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
[L.Eq]
{φ : LO.FirstOrder.Semiformula L ξ₁ n₁}
{t u : LO.FirstOrder.Semiterm L ξ₂ n₂}
:
(LO.FirstOrder.Rewriting.app ω) φ = op(=).operator ![t, u] ↔ ∃ (t' : LO.FirstOrder.Semiterm L ξ₁ n₁) (u' : LO.FirstOrder.Semiterm L ξ₁ n₁),
ω t' = t ∧ ω u' = u ∧ φ = op(=).operator ![t', u']
theorem
LO.FirstOrder.Rew.eq_lt_iff
{ξ₁ : Type u_1}
{n₁ : ℕ}
{ξ₂ : Type u_2}
{n₂ : ℕ}
{L : LO.FirstOrder.Language}
(ω : LO.FirstOrder.Rew L ξ₁ n₁ ξ₂ n₂)
[L.LT]
{φ : LO.FirstOrder.Semiformula L ξ₁ n₁}
{t u : LO.FirstOrder.Semiterm L ξ₂ n₂}
:
(LO.FirstOrder.Rewriting.app ω) φ = op(<).operator ![t, u] ↔ ∃ (t' : LO.FirstOrder.Semiterm L ξ₁ n₁) (u' : LO.FirstOrder.Semiterm L ξ₁ n₁),
ω t' = t ∧ ω u' = u ∧ φ = op(<).operator ![t', u']
class
LO.FirstOrder.Structure.Zero
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiterm.Operator.Zero L]
[Zero M]
:
- zero : LO.FirstOrder.Semiterm.Operator.val op(0) ![] = 0
Instances
class
LO.FirstOrder.Structure.One
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiterm.Operator.One L]
[One M]
:
- one : LO.FirstOrder.Semiterm.Operator.val op(1) ![] = 1
Instances
class
LO.FirstOrder.Structure.Add
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiterm.Operator.Add L]
[Add M]
:
Instances
class
LO.FirstOrder.Structure.Mul
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiterm.Operator.Mul L]
[Mul M]
:
Instances
class
LO.FirstOrder.Structure.Exp
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiterm.Operator.Exp L]
[Exp M]
:
Instances
class
LO.FirstOrder.Structure.Eq
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiformula.Operator.Eq L]
:
Instances
class
LO.FirstOrder.Structure.LT
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiformula.Operator.LT L]
[LT M]
:
Instances
class
LO.FirstOrder.Structure.LE
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiformula.Operator.LE L]
[LE M]
:
Instances
class
LO.FirstOrder.Structure.Mem
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiformula.Operator.Mem L]
[Membership M M]
:
Instances
instance
LO.FirstOrder.Structure.instLEOfEqOfLT
(L : LO.FirstOrder.Language)
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.Eq]
[L.LT]
[LO.FirstOrder.Structure.Eq L M]
[PartialOrder M]
[LO.FirstOrder.Structure.LT L M]
:
Equations
- ⋯ = ⋯
@[simp]
theorem
LO.FirstOrder.Structure.zero_eq_of_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.Zero]
[Zero M]
[LO.FirstOrder.Structure.Zero L M]
:
LO.FirstOrder.Structure.func LO.FirstOrder.Language.Zero.zero ![] = 0
@[simp]
theorem
LO.FirstOrder.Structure.one_eq_of_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.One]
[One M]
[LO.FirstOrder.Structure.One L M]
:
LO.FirstOrder.Structure.func LO.FirstOrder.Language.One.one ![] = 1
@[simp]
theorem
LO.FirstOrder.Structure.add_eq_of_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.Add]
[Add M]
[LO.FirstOrder.Structure.Add L M]
{v : Fin 2 → M}
:
LO.FirstOrder.Structure.func LO.FirstOrder.Language.Add.add v = v 0 + v 1
@[simp]
theorem
LO.FirstOrder.Structure.mul_eq_of_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.Mul]
[Mul M]
[LO.FirstOrder.Structure.Mul L M]
{v : Fin 2 → M}
:
LO.FirstOrder.Structure.func LO.FirstOrder.Language.Mul.mul v = v 0 * v 1
@[simp]
theorem
LO.FirstOrder.Structure.exp_eq_of_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.Exp]
[Exp M]
[LO.FirstOrder.Structure.Exp L M]
{v : Fin 1 → M}
:
LO.FirstOrder.Structure.func LO.FirstOrder.Language.Exp.exp v = exp (v 0)
theorem
LO.FirstOrder.Structure.le_iff_of_eq_of_lt
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[LO.FirstOrder.Semiformula.Operator.Eq L]
[LO.FirstOrder.Semiformula.Operator.LT L]
[LT M]
[LO.FirstOrder.Structure.Eq L M]
[LO.FirstOrder.Structure.LT L M]
{a b : M}
:
@[simp]
theorem
LO.FirstOrder.Structure.eq_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.Eq]
[LO.FirstOrder.Structure.Eq L M]
{v : Fin 2 → M}
:
LO.FirstOrder.Structure.rel LO.FirstOrder.Language.Eq.eq v ↔ v 0 = v 1
@[simp]
theorem
LO.FirstOrder.Structure.lt_lang
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
[L.LT]
[LT M]
[LO.FirstOrder.Structure.LT L M]
{v : Fin 2 → M}
:
LO.FirstOrder.Structure.rel LO.FirstOrder.Language.LT.lt v ↔ v 0 < v 1
theorem
LO.FirstOrder.Structure.operator_val_ofEquiv_iff
{L : LO.FirstOrder.Language}
(M : Type u_1)
[LO.FirstOrder.Structure L M]
{N : Type u_2}
(φ : M ≃ N)
{k : ℕ}
{o : LO.FirstOrder.Semiformula.Operator L k}
{v : Fin k → N}
:
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_ballLT
{ξ : Type u_3}
{n : ℕ}
{L : LO.FirstOrder.Language}
{M : Type u_1}
{s : LO.FirstOrder.Structure L M}
{t : LO.FirstOrder.Semiterm L ξ n}
{φ : LO.FirstOrder.Semiformula L ξ (n + 1)}
[LO.FirstOrder.Semiformula.Operator.LT L]
[LT M]
[LO.FirstOrder.Structure.LT L M]
{e : Fin n → M}
{ε : ξ → M}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (LO.FirstOrder.Semiformula.ballLT t φ) ↔ ∀ x < LO.FirstOrder.Semiterm.val s e ε t, (LO.FirstOrder.Semiformula.Eval s (x :> e) ε) φ
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_bexLT
{ξ : Type u_3}
{n : ℕ}
{L : LO.FirstOrder.Language}
{M : Type u_1}
{s : LO.FirstOrder.Structure L M}
{t : LO.FirstOrder.Semiterm L ξ n}
{φ : LO.FirstOrder.Semiformula L ξ (n + 1)}
[LO.FirstOrder.Semiformula.Operator.LT L]
[LT M]
[LO.FirstOrder.Structure.LT L M]
{e : Fin n → M}
{ε : ξ → M}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (LO.FirstOrder.Semiformula.bexLT t φ) ↔ ∃ x < LO.FirstOrder.Semiterm.val s e ε t, (LO.FirstOrder.Semiformula.Eval s (x :> e) ε) φ
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_ballLE
{ξ : Type u_3}
{n : ℕ}
{L : LO.FirstOrder.Language}
{M : Type u_1}
{s : LO.FirstOrder.Structure L M}
{t : LO.FirstOrder.Semiterm L ξ n}
{φ : LO.FirstOrder.Semiformula L ξ (n + 1)}
[LO.FirstOrder.Semiformula.Operator.LE L]
[LE M]
[LO.FirstOrder.Structure.LE L M]
{e : Fin n → M}
{ε : ξ → M}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (LO.FirstOrder.Semiformula.ballLE t φ) ↔ ∀ x ≤ LO.FirstOrder.Semiterm.val s e ε t, (LO.FirstOrder.Semiformula.Eval s (x :> e) ε) φ
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_bexLE
{ξ : Type u_3}
{n : ℕ}
{L : LO.FirstOrder.Language}
{M : Type u_1}
{s : LO.FirstOrder.Structure L M}
{t : LO.FirstOrder.Semiterm L ξ n}
{φ : LO.FirstOrder.Semiformula L ξ (n + 1)}
[LO.FirstOrder.Semiformula.Operator.LE L]
[LE M]
[LO.FirstOrder.Structure.LE L M]
{e : Fin n → M}
{ε : ξ → M}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (LO.FirstOrder.Semiformula.bexLE t φ) ↔ ∃ x ≤ LO.FirstOrder.Semiterm.val s e ε t, (LO.FirstOrder.Semiformula.Eval s (x :> e) ε) φ
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_ballMem
{ξ : Type u_3}
{n : ℕ}
{L : LO.FirstOrder.Language}
{M : Type u_1}
{s : LO.FirstOrder.Structure L M}
{t : LO.FirstOrder.Semiterm L ξ n}
{φ : LO.FirstOrder.Semiformula L ξ (n + 1)}
[LO.FirstOrder.Semiformula.Operator.Mem L]
[Membership M M]
[LO.FirstOrder.Structure.Mem L M]
{e : Fin n → M}
{ε : ξ → M}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (LO.FirstOrder.Semiformula.ballMem t φ) ↔ ∀ x ∈ LO.FirstOrder.Semiterm.val s e ε t, (LO.FirstOrder.Semiformula.Eval s (x :> e) ε) φ
@[simp]
theorem
LO.FirstOrder.Semiformula.eval_bexMem
{ξ : Type u_3}
{n : ℕ}
{L : LO.FirstOrder.Language}
{M : Type u_1}
{s : LO.FirstOrder.Structure L M}
{t : LO.FirstOrder.Semiterm L ξ n}
{φ : LO.FirstOrder.Semiformula L ξ (n + 1)}
[LO.FirstOrder.Semiformula.Operator.Mem L]
[Membership M M]
[LO.FirstOrder.Structure.Mem L M]
{e : Fin n → M}
{ε : ξ → M}
:
(LO.FirstOrder.Semiformula.Eval s e ε) (LO.FirstOrder.Semiformula.bexMem t φ) ↔ ∃ x ∈ LO.FirstOrder.Semiterm.val s e ε t, (LO.FirstOrder.Semiformula.Eval s (x :> e) ε) φ