Documentation

Arithmetization.ISigmaOne.Metamath.Language

Instances For
    structure LO.Arith.Language (V : Type u_1) :
    Type u_1
    • Func (arity : V) : VProp
    • Rel (arity : V) : VProp
    Instances For
      Instances
        @[simp]
        theorem LO.Arith.Language.Defined.eval_func {V : Type u_1} [ORingStruc V] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] (v : Fin 2V) :
        @[simp]
        theorem LO.Arith.Language.Defined.eval_rel_iff {V : Type u_1} [ORingStruc V] {L : Arith.Language V} {pL : FirstOrder.Arith.LDef} [L.Defined pL] (v : Fin 2V) :
        class LO.Arith.DefinableLanguage (L : FirstOrder.Language) [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] extends LO.FirstOrder.Arith.LDef :
        Instances
          def LO.FirstOrder.Language.lDef (L : Language) [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [d : Arith.DefinableLanguage L] :
          Equations
          Instances For
            def LO.FirstOrder.Language.codeIn (L : Language) [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem LO.FirstOrder.Language.codeIn_func_def (L : Language) [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [Arith.DefinableLanguage L] (V : Type u_1) [ORingStruc V] :
              (L.codeIn V).Func = fun (x y : V) => V ⊧/![x, y] (Arith.HierarchySymbol.Semiformula.val L.lDef.func)
              instance LO.Arith.instDefinedCodeInLDef {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] :
              (L.codeIn V).Defined L.lDef
              instance LO.Arith.instGoedelQuoteFunc_arithmetization {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } :
              GoedelQuote (L.Func k) V
              Equations
              instance LO.Arith.instGoedelQuoteRel_arithmetization {L : FirstOrder.Language} [(k : ) → Encodable (L.Rel k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } :
              GoedelQuote (L.Rel k) V
              Equations
              theorem LO.Arith.quote_func_def {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (f : L.Func k) :
              theorem LO.Arith.quote_rel_def {L : FirstOrder.Language} [(k : ) → Encodable (L.Rel k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (R : L.Rel k) :
              theorem LO.Arith.codeIn_func_quote_iff {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k x : } :
              (L.codeIn V).Func k x ∃ (f : L.Func k), Encodable.encode f = x
              theorem LO.Arith.codeIn_rel_quote_iff {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k x : } :
              (L.codeIn V).Rel k x ∃ (R : L.Rel k), Encodable.encode R = x
              @[simp]
              theorem LO.Arith.codeIn_func_quote {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (f : L.Func k) :
              (L.codeIn V).Func k f
              @[simp]
              theorem LO.Arith.codeIn_rel_quote {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] [DefinableLanguage L] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (r : L.Rel k) :
              (L.codeIn V).Rel k r
              @[simp]
              theorem LO.Arith.quote_func_inj {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (f₁ f₂ : L.Func k) :
              f₁ = f₂ f₁ = f₂
              @[simp]
              theorem LO.Arith.quote_rel_inj {L : FirstOrder.Language} [(k : ) → Encodable (L.Rel k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (R₁ R₂ : L.Rel k) :
              R₁ = R₂ R₁ = R₂
              @[simp]
              theorem LO.Arith.coe_quote_func_nat {L : FirstOrder.Language} [(k : ) → Encodable (L.Func k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (f : L.Func k) :
              @[simp]
              theorem LO.Arith.coe_quote_rel_nat {L : FirstOrder.Language} [(k : ) → Encodable (L.Rel k)] {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐏𝐀⁻] {k : } (R : L.Rel k) :

              TODO: move to Basic/Syntax/Language.lean

              TODO: move to Basic/Syntax/Language.lean

              Equations
              • One or more equations did not get rendered due to their size.
              @[reducible, inline]
              Equations
              Instances For
                @[reducible, inline]
                Equations
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem LO.Arith.Formalized.lDef.func_def :
                    ℒₒᵣ.lDef.func = FirstOrder.Arith.HierarchySymbol.Semiformula.mkSigma (“((!!(FirstOrder.Semiterm.bvar 0) = !!0 ∧ !!(FirstOrder.Semiterm.bvar 1) = !!0) ∨ ((!!(FirstOrder.Semiterm.bvar 0) = !!0 ∧ !!(FirstOrder.Semiterm.bvar 1) = !!1) ∨ ((!!(FirstOrder.Semiterm.bvar 0) = !!2 ∧ !!(FirstOrder.Semiterm.bvar 1) = !!0) ∨ (!!(FirstOrder.Semiterm.bvar 0) = !!2 ∧ !!(FirstOrder.Semiterm.bvar 1) = !!1))))”)
                    theorem LO.Arith.Formalized.func_iff {V : Type u_1} [ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {k f : V} :
                    ⌜ℒₒᵣ⌝.Func k f k = 0 f = zeroIndex k = 0 f = oneIndex k = 2 f = addIndex k = 2 f = mulIndex