def
LO.FirstOrder.succInd
{L : Language}
[L.ORing]
{ΞΎ : Type u_3}
(Ο : Semiformula L ΞΎ 1)
:
Formula L ΞΎ
Equations
- LO.FirstOrder.succInd Ο = Ο/[β0] β β' (Ο/[LO.FirstOrder.Semiterm.bvar 0] β Ο/[β(!!(LO.FirstOrder.Semiterm.bvar 0) + !!β1)β]) β β' Ο/[LO.FirstOrder.Semiterm.bvar 0]
def
LO.FirstOrder.orderInd
{L : Language}
[L.ORing]
{ΞΎ : Type u_3}
(Ο : Semiformula L ΞΎ 1)
:
Formula L ΞΎ
Equations
- One or more equations did not get rendered due to their size.
def
LO.FirstOrder.leastNumber
{L : Language}
[L.ORing]
{ΞΎ : Type u_3}
(Ο : Semiformula L ΞΎ 1)
:
Formula L ΞΎ
Equations
- One or more equations did not get rendered due to their size.
- equal (Ο : SyntacticFormula ββα΅£) : Ο β ππ β πβ Ο
- Ξ©β (n m : β) : πβ (β(!!βn + !!βm) = !!β(n + m)β)
- Ξ©β (n m : β) : πβ (β(!!βn * !!βm) = !!β(n * m)β)
- Ξ©β (n m : β) : n β m β πβ (βΒ¬!!βn = !!βmβ)
- Ξ©β (n : β) : πβ (ββ' (!!(Semiterm.bvar 0) < !!βn β !(disjLt (fun (i : β) => β!!(Semiterm.bvar 0) = !!βiβ) n))β)
Instances For
- LO.FirstOrder.Arith.CobhamR0'.subtheoryOfCobhamR0
- LO.FirstOrder.Arith.CobhamR0.subTheoryPAMinus
- LO.FirstOrder.Arith.Standard.models_CobhamR0
- LO.FirstOrder.Arith.instModelsTheoryCobhamR0_arithmetization
- LO.FirstOrder.Arith.instSubtheorySyntacticFormulaORingTheoryCobhamR0_arithmetization
- LO.FirstOrder.Theory.CobhamR0.consistent
- LO.FirstOrder.Theory.EQ.subtheoryOfCobhamR0
Equations
- LO.FirstOrder.Theory.Β«termπβΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termπβΒ» 1024 (Lean.ParserDescr.symbol "πβ")
- equal (Ο : SyntacticFormula ββα΅£) : Ο β ππ β ππβ» Ο
- addZero : ππβ» (β(!!(Semiterm.fvar 0) + !!β0) = !!(Semiterm.fvar 0)β)
- addAssoc : ππβ» (β((!!(Semiterm.fvar 0) + !!(Semiterm.fvar 1)) + !!(Semiterm.fvar 2)) = (!!(Semiterm.fvar 0) + (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 2)))β)
- addComm : ππβ» (β(!!(Semiterm.fvar 0) + !!(Semiterm.fvar 1)) = (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 0))β)
- addEqOfLt : ππβ» (β(!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) β β' (!!(Semiterm.fvar 0) + !!(Semiterm.bvar 0)) = !!(Semiterm.fvar 1))β)
- zeroLe : ππβ» (β!!β0 β€ !!(Semiterm.fvar 0)β)
- zeroLtOne : ππβ» (β!!β0 < !!β1β)
- oneLeOfZeroLt : ππβ» (β(!!β0 < !!(Semiterm.fvar 0) β !!β1 β€ !!(Semiterm.fvar 0))β)
- addLtAdd : ππβ» (β(!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) β (!!(Semiterm.fvar 0) + !!(Semiterm.fvar 2)) < (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 2)))β)
- mulZero : ππβ» (β(!!(Semiterm.fvar 0) * !!β0) = !!β0β)
- mulOne : ππβ» (β(!!(Semiterm.fvar 0) * !!β1) = !!(Semiterm.fvar 0)β)
- mulAssoc : ππβ» (β((!!(Semiterm.fvar 0) * !!(Semiterm.fvar 1)) * !!(Semiterm.fvar 2)) = (!!(Semiterm.fvar 0) * (!!(Semiterm.fvar 1) * !!(Semiterm.fvar 2)))β)
- mulComm : ππβ» (β(!!(Semiterm.fvar 0) * !!(Semiterm.fvar 1)) = (!!(Semiterm.fvar 1) * !!(Semiterm.fvar 0))β)
- mulLtMul : ππβ» (β((!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) β§ !!β0 < !!(Semiterm.fvar 2)) β (!!(Semiterm.fvar 0) * !!(Semiterm.fvar 2)) < (!!(Semiterm.fvar 1) * !!(Semiterm.fvar 2)))β)
- distr : ππβ» (β(!!(Semiterm.fvar 0) * (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 2))) = ((!!(Semiterm.fvar 0) * !!(Semiterm.fvar 1)) + (!!(Semiterm.fvar 0) * !!(Semiterm.fvar 2)))β)
- ltIrrefl : ππβ» (βΒ¬!!(Semiterm.fvar 0) < !!(Semiterm.fvar 0)β)
- ltTrans : ππβ» (β((!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) β§ !!(Semiterm.fvar 1) < !!(Semiterm.fvar 2)) β !!(Semiterm.fvar 0) < !!(Semiterm.fvar 2))β)
- ltTri : ππβ» (β(!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) β¨ (!!(Semiterm.fvar 0) = !!(Semiterm.fvar 1) β¨ !!(Semiterm.fvar 1) < !!(Semiterm.fvar 0)))β)
Instances For
- LO.Arith.instModelsTheoryPAMinusOfIOpen_arithmetization
- LO.FirstOrder.Arith.CobhamR0.subTheoryPAMinus
- LO.FirstOrder.Arith.Nonstandard.instModelsTheoryPAMinus
- LO.FirstOrder.Arith.Standard.models_PAMinus
- LO.FirstOrder.Arith.instModelsTheoryPAMinusOfIOpen
- LO.FirstOrder.Arith.models_PAMinus_of_models_peano
- LO.FirstOrder.Theory.EQ.subtheoryOfPAMinus
- LO.FirstOrder.Theory.PAMinus.subtheoryOfIndH
Equations
- LO.FirstOrder.Theory.Β«termππβ»Β» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππβ»Β» 1024 (Lean.ParserDescr.symbol "ππβ»")
def
LO.FirstOrder.Theory.indScheme
(L : Language)
[L.ORing]
(Ξ : Semiformula L β 1 β Prop)
:
Theory L
Equations
- LO.FirstOrder.Theory.indScheme L Ξ = {Ο : LO.FirstOrder.SyntacticFormula L | β (Ο : LO.FirstOrder.Semiformula L β 1), Ξ Ο β§ Ο = LO.FirstOrder.succInd Ο}
Equations
- LO.FirstOrder.Theory.Β«termπopenΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termπopenΒ» 1024 (Lean.ParserDescr.symbol "πopen")
@[reducible, inline]
Equations
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
Equations
Equations
- LO.FirstOrder.Theory.Β«termππΊ_Β» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππΊ_Β» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "ππΊ") (Lean.ParserDescr.cat `term 1024))
Equations
- LO.FirstOrder.Theory.Β«termππΊβΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππΊβΒ» 1024 (Lean.ParserDescr.symbol "ππΊβ")
@[reducible, inline]
Equations
Instances For
Equations
- LO.FirstOrder.Theory.Β«termππ·_Β» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππ·_Β» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "ππ·") (Lean.ParserDescr.cat `term 1024))
Equations
- LO.FirstOrder.Theory.Β«termππ·βΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππ·βΒ» 1024 (Lean.ParserDescr.symbol "ππ·β")
Equations
- LO.FirstOrder.Theory.Β«termππΊβΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππΊβΒ» 1024 (Lean.ParserDescr.symbol "ππΊβ")
Equations
- LO.FirstOrder.Theory.Β«termππ·βΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππ·βΒ» 1024 (Lean.ParserDescr.symbol "ππ·β")
@[reducible, inline]
Equations
- LO.FirstOrder.Theory.Β«termππΒ» = Lean.ParserDescr.node `LO.FirstOrder.Theory.Β«termππΒ» 1024 (Lean.ParserDescr.symbol "ππ")
theorem
LO.FirstOrder.Theory.coe_indH_subset_indH
{L : Language}
[L.ORing]
{Ξ : Polarity}
{Ξ½ : β}
:
β(Semiformula.lMap Language.oringEmb) '' indScheme ββα΅£ (Arith.Hierarchy Ξ Ξ½) β indScheme L (Arith.Hierarchy Ξ Ξ½)