def
LO.FirstOrder.succInd
{L : LO.FirstOrder.Language}
[L.ORing]
{ξ : Type u_3}
(φ : LO.FirstOrder.Semiformula L ξ 1)
:
Equations
- LO.FirstOrder.succInd φ = φ/[‘0’] ➝ ∀' (φ/[LO.FirstOrder.Semiterm.bvar 0] ➝ φ/[‘(!!(LO.FirstOrder.Semiterm.bvar 0) + 1)’]) ➝ ∀' φ/[LO.FirstOrder.Semiterm.bvar 0]
Instances For
def
LO.FirstOrder.orderInd
{L : LO.FirstOrder.Language}
[L.ORing]
{ξ : Type u_3}
(φ : LO.FirstOrder.Semiformula L ξ 1)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.FirstOrder.leastNumber
{L : LO.FirstOrder.Language}
[L.ORing]
{ξ : Type u_3}
(φ : LO.FirstOrder.Semiformula L ξ 1)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
- equal: ∀ φ ∈ 𝐄𝐐, 𝐑₀ φ
- Ω₁: ∀ (n m : ℕ), 𝐑₀ (“(!!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ n)) + !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ m))) = !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ (n + m)))”)
- Ω₂: ∀ (n m : ℕ), 𝐑₀ (“(!!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ n)) * !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ m))) = !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ (n * m)))”)
- Ω₃: ∀ (n m : ℕ), n ≠ m → 𝐑₀ (“¬!!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ n)) = !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ m))”)
- Ω₄: ∀ (n : ℕ), 𝐑₀ (“∀' (!!(LO.FirstOrder.Semiterm.bvar 0) < !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ n)) ↔ !(LO.disjLt (fun (i : ℕ) => “!!(LO.FirstOrder.Semiterm.bvar 0) = !!(LO.FirstOrder.Semiterm.Operator.const (LO.FirstOrder.Semiterm.Operator.numeral ℒₒᵣ i))”) n))”)
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐑₀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐑₀» 1024 (Lean.ParserDescr.symbol "𝐑₀")
Instances For
- equal: ∀ φ ∈ 𝐄𝐐, 𝐏𝐀⁻ φ
- addZero: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) + 0) = !!(LO.FirstOrder.Semiterm.fvar 0)”)
- addAssoc: 𝐏𝐀⁻ (“((!!(LO.FirstOrder.Semiterm.fvar 0) + !!(LO.FirstOrder.Semiterm.fvar 1)) + !!(LO.FirstOrder.Semiterm.fvar 2)) = (!!(LO.FirstOrder.Semiterm.fvar 0) + (!!(LO.FirstOrder.Semiterm.fvar 1) + !!(LO.FirstOrder.Semiterm.fvar 2)))”)
- addComm: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) + !!(LO.FirstOrder.Semiterm.fvar 1)) = (!!(LO.FirstOrder.Semiterm.fvar 1) + !!(LO.FirstOrder.Semiterm.fvar 0))”)
- addEqOfLt: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 1) → ∃' (!!(LO.FirstOrder.Semiterm.fvar 0) + !!(LO.FirstOrder.Semiterm.bvar 0)) = !!(LO.FirstOrder.Semiterm.fvar 1))”)
- zeroLe: 𝐏𝐀⁻ (“0 ≤ !!(LO.FirstOrder.Semiterm.fvar 0)”)
- zeroLtOne: 𝐏𝐀⁻ (“0 < 1”)
- oneLeOfZeroLt: 𝐏𝐀⁻ (“(0 < !!(LO.FirstOrder.Semiterm.fvar 0) → 1 ≤ !!(LO.FirstOrder.Semiterm.fvar 0))”)
- addLtAdd: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 1) → (!!(LO.FirstOrder.Semiterm.fvar 0) + !!(LO.FirstOrder.Semiterm.fvar 2)) < (!!(LO.FirstOrder.Semiterm.fvar 1) + !!(LO.FirstOrder.Semiterm.fvar 2)))”)
- mulZero: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) * 0) = 0”)
- mulOne: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) * 1) = !!(LO.FirstOrder.Semiterm.fvar 0)”)
- mulAssoc: 𝐏𝐀⁻ (“((!!(LO.FirstOrder.Semiterm.fvar 0) * !!(LO.FirstOrder.Semiterm.fvar 1)) * !!(LO.FirstOrder.Semiterm.fvar 2)) = (!!(LO.FirstOrder.Semiterm.fvar 0) * (!!(LO.FirstOrder.Semiterm.fvar 1) * !!(LO.FirstOrder.Semiterm.fvar 2)))”)
- mulComm: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) * !!(LO.FirstOrder.Semiterm.fvar 1)) = (!!(LO.FirstOrder.Semiterm.fvar 1) * !!(LO.FirstOrder.Semiterm.fvar 0))”)
- mulLtMul: 𝐏𝐀⁻ (“((!!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 1) ∧ 0 < !!(LO.FirstOrder.Semiterm.fvar 2)) → (!!(LO.FirstOrder.Semiterm.fvar 0) * !!(LO.FirstOrder.Semiterm.fvar 2)) < (!!(LO.FirstOrder.Semiterm.fvar 1) * !!(LO.FirstOrder.Semiterm.fvar 2)))”)
- distr: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) * (!!(LO.FirstOrder.Semiterm.fvar 1) + !!(LO.FirstOrder.Semiterm.fvar 2))) = ((!!(LO.FirstOrder.Semiterm.fvar 0) * !!(LO.FirstOrder.Semiterm.fvar 1)) + (!!(LO.FirstOrder.Semiterm.fvar 0) * !!(LO.FirstOrder.Semiterm.fvar 2)))”)
- ltIrrefl: 𝐏𝐀⁻ (“¬!!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 0)”)
- ltTrans: 𝐏𝐀⁻ (“((!!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 1) ∧ !!(LO.FirstOrder.Semiterm.fvar 1) < !!(LO.FirstOrder.Semiterm.fvar 2)) → !!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 2))”)
- ltTri: 𝐏𝐀⁻ (“(!!(LO.FirstOrder.Semiterm.fvar 0) < !!(LO.FirstOrder.Semiterm.fvar 1) ∨ (!!(LO.FirstOrder.Semiterm.fvar 0) = !!(LO.FirstOrder.Semiterm.fvar 1) ∨ !!(LO.FirstOrder.Semiterm.fvar 1) < !!(LO.FirstOrder.Semiterm.fvar 0)))”)
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐏𝐀⁻» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐏𝐀⁻» 1024 (Lean.ParserDescr.symbol "𝐏𝐀⁻")
Instances For
def
LO.FirstOrder.Theory.indScheme
(L : LO.FirstOrder.Language)
[L.ORing]
(Γ : LO.FirstOrder.Semiformula L ℕ 1 → Prop)
:
Equations
- LO.FirstOrder.Theory.indScheme L Γ = {ψ : LO.FirstOrder.SyntacticFormula L | ∃ (φ : LO.FirstOrder.Semiformula L ℕ 1), Γ φ ∧ ψ = LO.FirstOrder.succInd φ}
Instances For
@[reducible, inline]
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈open» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈open» 1024 (Lean.ParserDescr.symbol "𝐈open")
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚺_» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚺_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "𝐈𝚺") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚺₀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚺₀» 1024 (Lean.ParserDescr.symbol "𝐈𝚺₀")
Instances For
@[reducible, inline]
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚷_» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚷_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "𝐈𝚷") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚷₀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚷₀» 1024 (Lean.ParserDescr.symbol "𝐈𝚷₀")
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚺₁» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚺₁» 1024 (Lean.ParserDescr.symbol "𝐈𝚺₁")
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚷₁» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚷₁» 1024 (Lean.ParserDescr.symbol "𝐈𝚷₁")
Instances For
@[reducible, inline]
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐏𝐀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐏𝐀» 1024 (Lean.ParserDescr.symbol "𝐏𝐀")
Instances For
theorem
LO.FirstOrder.Theory.coe_indH_subset_indH
{L : LO.FirstOrder.Language}
[L.ORing]
{Γ : LO.Polarity}
{ν : ℕ}
:
⇑(LO.FirstOrder.Semiformula.lMap LO.FirstOrder.Language.oringEmb) '' LO.FirstOrder.Theory.indScheme ℒₒᵣ (LO.FirstOrder.Arith.Hierarchy Γ ν) ⊆ LO.FirstOrder.Theory.indScheme L (LO.FirstOrder.Arith.Hierarchy Γ ν)
Equations
- LO.FirstOrder.Theory.PAMinus.subtheoryOfIndH = LO.System.Subtheory.ofSubset ⋯
Equations
- LO.FirstOrder.Theory.EQ.subtheoryOfIndH = LO.FirstOrder.Theory.PAMinus.subtheoryOfIndH.comp LO.FirstOrder.Theory.EQ.subtheoryOfPAMinus
Equations
- LO.FirstOrder.Theory.EQ.subtheoryOfIOpen = inferInstance.comp LO.FirstOrder.Theory.EQ.subtheoryOfPAMinus