def
LO.FirstOrder.succInd
{L : Language}
[L.ORing]
{ξ : Type u_3}
(φ : Semiformula L ξ 1)
:
Formula L ξ
Equations
- LO.FirstOrder.succInd φ = φ/[↑0] ➝ ∀' (φ/[LO.FirstOrder.Semiterm.bvar 0] ➝ φ/[‘(!!(LO.FirstOrder.Semiterm.bvar 0) + !!↑1)’]) ➝ ∀' φ/[LO.FirstOrder.Semiterm.bvar 0]
Instances For
def
LO.FirstOrder.orderInd
{L : Language}
[L.ORing]
{ξ : Type u_3}
(φ : Semiformula L ξ 1)
:
Formula L ξ
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.FirstOrder.leastNumber
{L : Language}
[L.ORing]
{ξ : Type u_3}
(φ : Semiformula L ξ 1)
:
Formula L ξ
Equations
- One or more equations did not get rendered due to their size.
Instances For
- equal (φ : SyntacticFormula ℒₒᵣ) : φ ∈ 𝐄𝐐 → 𝐑₀ φ
- Ω₁ (n m : ℕ) : 𝐑₀ (“(!!↑n + !!↑m) = !!↑(n + m)”)
- Ω₂ (n m : ℕ) : 𝐑₀ (“(!!↑n * !!↑m) = !!↑(n * m)”)
- Ω₃ (n m : ℕ) : n ≠ m → 𝐑₀ (“¬!!↑n = !!↑m”)
- Ω₄ (n : ℕ) : 𝐑₀ (“∀' (!!(Semiterm.bvar 0) < !!↑n ↔ !(disjLt (fun (i : ℕ) => “!!(Semiterm.bvar 0) = !!↑i”) n))”)
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐑₀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐑₀» 1024 (Lean.ParserDescr.symbol "𝐑₀")
Instances For
- equal (φ : SyntacticFormula ℒₒᵣ) : φ ∈ 𝐄𝐐 → 𝐏𝐀⁻ φ
- addZero : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) + !!↑0) = !!(Semiterm.fvar 0)”)
- addAssoc : 𝐏𝐀⁻ (“((!!(Semiterm.fvar 0) + !!(Semiterm.fvar 1)) + !!(Semiterm.fvar 2)) = (!!(Semiterm.fvar 0) + (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 2)))”)
- addComm : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) + !!(Semiterm.fvar 1)) = (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 0))”)
- addEqOfLt : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) → ∃' (!!(Semiterm.fvar 0) + !!(Semiterm.bvar 0)) = !!(Semiterm.fvar 1))”)
- zeroLe : 𝐏𝐀⁻ (“!!↑0 ≤ !!(Semiterm.fvar 0)”)
- zeroLtOne : 𝐏𝐀⁻ (“!!↑0 < !!↑1”)
- oneLeOfZeroLt : 𝐏𝐀⁻ (“(!!↑0 < !!(Semiterm.fvar 0) → !!↑1 ≤ !!(Semiterm.fvar 0))”)
- addLtAdd : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) → (!!(Semiterm.fvar 0) + !!(Semiterm.fvar 2)) < (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 2)))”)
- mulZero : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) * !!↑0) = !!↑0”)
- mulOne : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) * !!↑1) = !!(Semiterm.fvar 0)”)
- mulAssoc : 𝐏𝐀⁻ (“((!!(Semiterm.fvar 0) * !!(Semiterm.fvar 1)) * !!(Semiterm.fvar 2)) = (!!(Semiterm.fvar 0) * (!!(Semiterm.fvar 1) * !!(Semiterm.fvar 2)))”)
- mulComm : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) * !!(Semiterm.fvar 1)) = (!!(Semiterm.fvar 1) * !!(Semiterm.fvar 0))”)
- mulLtMul : 𝐏𝐀⁻ (“((!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) ∧ !!↑0 < !!(Semiterm.fvar 2)) → (!!(Semiterm.fvar 0) * !!(Semiterm.fvar 2)) < (!!(Semiterm.fvar 1) * !!(Semiterm.fvar 2)))”)
- distr : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) * (!!(Semiterm.fvar 1) + !!(Semiterm.fvar 2))) = ((!!(Semiterm.fvar 0) * !!(Semiterm.fvar 1)) + (!!(Semiterm.fvar 0) * !!(Semiterm.fvar 2)))”)
- ltIrrefl : 𝐏𝐀⁻ (“¬!!(Semiterm.fvar 0) < !!(Semiterm.fvar 0)”)
- ltTrans : 𝐏𝐀⁻ (“((!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) ∧ !!(Semiterm.fvar 1) < !!(Semiterm.fvar 2)) → !!(Semiterm.fvar 0) < !!(Semiterm.fvar 2))”)
- ltTri : 𝐏𝐀⁻ (“(!!(Semiterm.fvar 0) < !!(Semiterm.fvar 1) ∨ (!!(Semiterm.fvar 0) = !!(Semiterm.fvar 1) ∨ !!(Semiterm.fvar 1) < !!(Semiterm.fvar 0)))”)
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐏𝐀⁻» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐏𝐀⁻» 1024 (Lean.ParserDescr.symbol "𝐏𝐀⁻")
Instances For
def
LO.FirstOrder.Theory.indScheme
(L : Language)
[L.ORing]
(Γ : Semiformula L ℕ 1 → Prop)
:
Theory L
Equations
- LO.FirstOrder.Theory.indScheme L Γ = {ψ : LO.FirstOrder.SyntacticFormula L | ∃ (φ : LO.FirstOrder.Semiformula L ℕ 1), Γ φ ∧ ψ = LO.FirstOrder.succInd φ}
Instances For
@[reducible, inline]
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈open» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈open» 1024 (Lean.ParserDescr.symbol "𝐈open")
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚺_» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚺_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "𝐈𝚺") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚺₀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚺₀» 1024 (Lean.ParserDescr.symbol "𝐈𝚺₀")
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚷_» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚷_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "𝐈𝚷") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚷₀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚷₀» 1024 (Lean.ParserDescr.symbol "𝐈𝚷₀")
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚺₁» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚺₁» 1024 (Lean.ParserDescr.symbol "𝐈𝚺₁")
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐈𝚷₁» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐈𝚷₁» 1024 (Lean.ParserDescr.symbol "𝐈𝚷₁")
Instances For
Equations
- LO.FirstOrder.Theory.«term𝐏𝐀» = Lean.ParserDescr.node `LO.FirstOrder.Theory.«term𝐏𝐀» 1024 (Lean.ParserDescr.symbol "𝐏𝐀")
Instances For
theorem
LO.FirstOrder.Theory.coe_indH_subset_indH
{L : Language}
[L.ORing]
{Γ : Polarity}
{ν : ℕ}
:
⇑(Semiformula.lMap Language.oringEmb) '' indScheme ℒₒᵣ (Arith.Hierarchy Γ ν) ⊆ indScheme L (Arith.Hierarchy Γ ν)