Documentation

Foundation.FirstOrder.Basic.Eq

def Matrix.iget {α : Type u_1} {k : } [Inhabited α] (v : Fin kα) (x : ) :
α
Equations
Instances For
    Instances
      Instances For
        Equations
        Instances For
          theorem LO.FirstOrder.Structure.Eq.eqv_symm {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {a b : M} :
          eqv L a beqv L b a
          theorem LO.FirstOrder.Structure.Eq.eqv_trans {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {a b c : M} :
          eqv L a beqv L b ceqv L a c
          theorem LO.FirstOrder.Structure.Eq.eqv_funcExt {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {k : } (f : L.Func k) {v w : Fin kM} (h : ∀ (i : Fin k), eqv L (v i) (w i)) :
          eqv L (func f v) (func f w)
          theorem LO.FirstOrder.Structure.Eq.eqv_relExt_aux {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {k : } (r : L.Rel k) {v w : Fin kM} (h : ∀ (i : Fin k), eqv L (v i) (w i)) :
          rel r vrel r w
          theorem LO.FirstOrder.Structure.Eq.eqv_relExt {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {k : } (r : L.Rel k) {v w : Fin kM} (h : ∀ (i : Fin k), eqv L (v i) (w i)) :
          rel r v = rel r w
          def LO.FirstOrder.Structure.Eq.QuotEq.func {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] ⦃k : (f : L.Func k) (v : Fin kQuotEq L M) :
          QuotEq L M
          Equations
          Instances For
            theorem LO.FirstOrder.Structure.Eq.QuotEq.funk_mk {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {k : } (f : L.Func k) (v : Fin kM) :
            (Structure.func f fun (i : Fin k) => v i) = Structure.func f v
            theorem LO.FirstOrder.Structure.Eq.QuotEq.rel_mk {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {k : } (r : L.Rel k) (v : Fin kM) :
            (Structure.rel r fun (i : Fin k) => v i) Structure.rel r v
            theorem LO.FirstOrder.Structure.Eq.QuotEq.val_mk {L : Language} {μ : Type u_1} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {n : } {e : Fin nM} {ε : μM} (t : Semiterm L μ n) :
            Semiterm.valm (QuotEq L M) (fun (i : Fin n) => e i) (fun (i : μ) => ε i) t = Semiterm.valm M e ε t
            theorem LO.FirstOrder.Structure.Eq.QuotEq.eval_mk {L : Language} {μ : Type u_1} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {n : } {e : Fin nM} {ε : μM} {φ : Semiformula L μ n} :
            (Semiformula.Evalm (QuotEq L M) (fun (i : Fin n) => e i) fun (i : μ) => ε i) φ (Semiformula.Evalm M e ε) φ
            theorem LO.FirstOrder.Structure.Eq.QuotEq.eval_mk₀ {L : Language} [Semiformula.Operator.Eq L] {M : Type u} [Nonempty M] [Structure L M] [H : M ⊧ₘ* 𝐄𝐐] {ξ : Type u_2} {ε : ξM} {φ : Formula L ξ} :
            (Semiformula.Evalfm (QuotEq L M) fun (i : ξ) => ε i) φ (Semiformula.Evalfm M ε) φ
            theorem LO.FirstOrder.consequence_iff_eq {L : Language} [Semiformula.Operator.Eq L] {T : Theory L} [𝐄𝐐 T] {φ : SyntacticFormula L} :
            T ⊨[Struc L] φ ∀ (M : Type v) [inst : Nonempty M] [inst_1 : Structure L M] [inst_2 : Structure.Eq L M], M ⊧ₘ* TM ⊧ₘ φ
            theorem LO.FirstOrder.consequence_iff_eq' {L : Language} [Semiformula.Operator.Eq L] {T : Theory L} [𝐄𝐐 T] {φ : SyntacticFormula L} :
            T ⊨[Struc L] φ ∀ (M : Type v) [inst : Nonempty M] [inst_1 : Structure L M] [inst_2 : Structure.Eq L M] [inst_3 : M ⊧ₘ* T], M ⊧ₘ φ
            def LO.FirstOrder.Semiformula.existsUnique {L : Language} [Operator.Eq L] {n : } {ξ : Type u_3} (φ : Semiformula L ξ (n + 1)) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem LO.FirstOrder.Semiformula.eval_existsUnique {L : Language} [Operator.Eq L] {M : Type u_2} [s : Structure L M] [Structure.Eq L M] {ξ : Type u_3} {n : } {e : Fin nM} {ε : ξM} {φ : Semiformula L ξ (n + 1)} :
                (Eval s e ε) (∃'! φ) ∃! x : M, (Eval s (x :> e) ε) φ
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For