theorem
LO.FirstOrder.Derivation.sound
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
(M : Type u_1)
[s : LO.FirstOrder.Structure L M]
[Nonempty M]
[M ⊧ₘ* T]
(ε : ℕ → M)
{Γ : LO.FirstOrder.Sequent L}
:
T ⟹ Γ → ∃ p ∈ Γ, (LO.FirstOrder.Semiformula.Evalfm M ε) p
theorem
LO.FirstOrder.sound
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
T ⊢ p → T ⊨[LO.FirstOrder.Struc L] p
theorem
LO.FirstOrder.sound!
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
T ⊢! p → T ⊨[LO.FirstOrder.Struc L] p
theorem
LO.FirstOrder.sound₀
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
theorem
LO.FirstOrder.sound₀!
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
instance
LO.FirstOrder.instSoundTheorySyntacticFormulaSetStrucModels
{L : LO.FirstOrder.Language}
(T : LO.FirstOrder.Theory L)
:
LO.Sound T (LO.Semantics.models (LO.FirstOrder.Struc L) T)
Equations
- ⋯ = ⋯
theorem
LO.FirstOrder.models_of_subtheory
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{U : LO.FirstOrder.Theory L}
[U ≼ T]
{M : Type u_1}
[LO.FirstOrder.Structure L M]
[Nonempty M]
(hM : M ⊧ₘ* T)
:
M ⊧ₘ* U
theorem
LO.FirstOrder.consistent_of_satidfiable
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
(h : LO.Semantics.Satisfiable (LO.FirstOrder.Struc L) T)
: