Equations
- LO.Arith.qqBvar z = ⟪0, z⟫ + 1
Instances For
Equations
- LO.Arith.qqFvar x = ⟪1, x⟫ + 1
Instances For
Equations
- LO.Arith.qqFunc k f v = ⟪2, ⟪k, ⟪f, v⟫⟫⟫ + 1
Instances For
Equations
- LO.Arith.«term^#_» = Lean.ParserDescr.node `LO.Arith.«term^#_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^#") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.Arith.«term^&_» = Lean.ParserDescr.node `LO.Arith.«term^&_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^&") (Lean.ParserDescr.cat `term 1024))
Instances For
Equations
- LO.Arith.«term^func_» = Lean.ParserDescr.node `LO.Arith.«term^func_» 1024 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^func ") (Lean.ParserDescr.cat `term 1024))
Instances For
@[simp]
theorem
LO.Arith.var_lt_qqBvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(z : V)
:
z < LO.Arith.qqBvar z
@[simp]
theorem
LO.Arith.var_lt_qqFvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(x : V)
:
x < LO.Arith.qqFvar x
@[simp]
theorem
LO.Arith.arity_lt_qqFunc
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(k f v : V)
:
k < LO.Arith.qqFunc k f v
@[simp]
theorem
LO.Arith.func_lt_qqFunc
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(k f v : V)
:
f < LO.Arith.qqFunc k f v
@[simp]
theorem
LO.Arith.terms_lt_qqFunc
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(k f v : V)
:
v < LO.Arith.qqFunc k f v
theorem
LO.Arith.nth_lt_qqFunc_of_lt
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{i k f v : V}
(hi : i < LO.Arith.len v)
:
LO.Arith.nth v i < LO.Arith.qqFunc k f v
@[simp]
theorem
LO.Arith.qqBvar_inj
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{z z' : V}
:
LO.Arith.qqBvar z = LO.Arith.qqBvar z' ↔ z = z'
@[simp]
theorem
LO.Arith.qqFvar_inj
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{x x' : V}
:
LO.Arith.qqFvar x = LO.Arith.qqFvar x' ↔ x = x'
@[simp]
theorem
LO.Arith.qqFunc_inj
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k f v k' f' w : V}
:
LO.Arith.qqFunc k f v = LO.Arith.qqFunc k' f' w ↔ k = k' ∧ f = f' ∧ v = w
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.qqBvar_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₀-Function₁ LO.Arith.qqBvar via LO.FirstOrder.Arith.qqBvarDef
@[simp]
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.qqFvar_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₀-Function₁ LO.Arith.qqFvar via LO.FirstOrder.Arith.qqFvarDef
@[simp]
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.qqFunc_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
:
𝚺₀-Function₃ LO.Arith.qqFunc via LO.FirstOrder.Arith.qqFuncDef
@[simp]
theorem
LO.Arith.eval_qqFuncDef
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(v : Fin 4 → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val LO.FirstOrder.Arith.qqFuncDef) ↔ v 0 = LO.Arith.qqFunc (v 1) (v 2) (v 3)
def
LO.Arith.FormalizedTerm.Phi
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
(C : Set V)
(t : V)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Arith.FormalizedTerm.construction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
Equations
- LO.Arith.FormalizedTerm.construction L = { Φ := fun (x : Fin 0 → V) => LO.Arith.FormalizedTerm.Phi L, defined := ⋯, monotone := ⋯ }
Instances For
instance
LO.Arith.FormalizedTerm.instStrongFiniteConstruction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
Equations
- ⋯ = ⋯
def
LO.Arith.Language.IsUTerm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
V → Prop
Equations
- L.IsUTerm = (LO.Arith.FormalizedTerm.construction L).Fixpoint ![]
Instances For
Equations
- pL.isUTermDef = (LO.Arith.FormalizedTerm.blueprint pL).fixpointDefΔ₁
Instances For
theorem
LO.Arith.Language.isUTerm_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚫₁-Predicate L.IsUTerm via pL.isUTermDef
@[simp]
theorem
LO.Arith.eval_isUTermDef
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(v : Fin 1 → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val pL.isUTermDef) ↔ L.IsUTerm (v 0)
instance
LO.Arith.Language.isUTerm_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚫₁-Predicate L.IsUTerm
Equations
- ⋯ = ⋯
instance
LO.Arith.isUTermDef_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{m : ℕ}
(Γ : LO.SigmaPiDelta)
:
{ Γ := Γ, rank := m + 1 }-Predicate L.IsUTerm
Equations
- ⋯ = ⋯
def
LO.Arith.Language.IsUTermVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(n w : V)
:
Equations
- L.IsUTermVec n w = (n = LO.Arith.len w ∧ ∀ i < n, L.IsUTerm (LO.Arith.nth w i))
Instances For
theorem
LO.Arith.Language.IsUTermVec.lh
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n w : V}
(h : L.IsUTermVec n w)
:
n = LO.Arith.len w
theorem
LO.Arith.Language.IsUTermVec.nth
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n w : V}
(h : L.IsUTermVec n w)
{i : V}
:
i < n → L.IsUTerm (LO.Arith.nth w i)
@[simp]
theorem
LO.Arith.Language.IsUTermVec.empty
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
L.IsUTermVec 0 0
@[simp]
theorem
LO.Arith.Language.IsUTermVec.empty_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{v : V}
:
theorem
LO.Arith.Language.IsUTermVec.two_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{v : V}
:
@[simp]
theorem
LO.Arith.Language.IsUTermVec.cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n w t : V}
(h : L.IsUTermVec n w)
(ht : L.IsUTerm t)
:
@[simp]
theorem
LO.Arith.Language.IsUTermVec.cons₁_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{t : V}
:
L.IsUTermVec 1 ?[t] ↔ L.IsUTerm t
@[simp]
theorem
LO.Arith.Language.IsUTermVec.mkSeq₂_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{t₁ t₂ : V}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.Language.isUTermVec_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
@[simp]
theorem
LO.Arith.eval_isUTermVecDef
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(v : Fin 2 → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val pL.isUTermVecDef) ↔ L.IsUTermVec (v 0) (v 1)
instance
LO.Arith.Language.isUTermVecDef_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
Equations
- ⋯ = ⋯
instance
LO.Arith.Language.isUTermVecDef_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{m : ℕ}
(Γ : LO.SigmaPiDelta)
:
Equations
- ⋯ = ⋯
theorem
LO.Arith.Language.IsUTerm.case_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{t : V}
:
L.IsUTerm t ↔ (∃ (z : V), t = LO.Arith.qqBvar z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x) ∨ ∃ (k : V) (f : V) (v : V), L.Func k f ∧ L.IsUTermVec k v ∧ t = LO.Arith.qqFunc k f v
theorem
LO.Arith.Language.IsUTerm.mk
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{t : V}
:
((∃ (z : V), t = LO.Arith.qqBvar z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x) ∨ ∃ (k : V) (f : V) (v : V), L.Func k f ∧ L.IsUTermVec k v ∧ t = LO.Arith.qqFunc k f v) →
L.IsUTerm t
Alias of the reverse direction of LO.Arith.Language.IsUTerm.case_iff
.
theorem
LO.Arith.Language.IsUTerm.case
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{t : V}
:
L.IsUTerm t →
(∃ (z : V), t = LO.Arith.qqBvar z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x) ∨ ∃ (k : V) (f : V) (v : V), L.Func k f ∧ L.IsUTermVec k v ∧ t = LO.Arith.qqFunc k f v
Alias of the forward direction of LO.Arith.Language.IsUTerm.case_iff
.
@[simp]
theorem
LO.Arith.Language.IsUTerm.bvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{z : V}
:
L.IsUTerm (LO.Arith.qqBvar z)
@[simp]
theorem
LO.Arith.Language.IsUTerm.fvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(x : V)
:
L.IsUTerm (LO.Arith.qqFvar x)
@[simp]
theorem
LO.Arith.Language.IsUTerm.func_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k f v : V}
:
L.IsUTerm (LO.Arith.qqFunc k f v) ↔ L.Func k f ∧ L.IsUTermVec k v
theorem
LO.Arith.Language.IsUTerm.func
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k f v : V}
(hkf : L.Func k f)
(hv : L.IsUTermVec k v)
:
L.IsUTerm (LO.Arith.qqFunc k f v)
theorem
LO.Arith.Language.IsUTerm.induction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(Γ : LO.SigmaPiDelta)
{P : V → Prop}
(hP : { Γ := Γ, rank := 1 }-Predicate P)
(hbvar : ∀ (z : V), P (LO.Arith.qqBvar z))
(hfvar : ∀ (x : V), P (LO.Arith.qqFvar x))
(hfunc : ∀ (k f v : V), L.Func k f → L.IsUTermVec k v → (∀ i < k, P (LO.Arith.nth v i)) → P (LO.Arith.qqFunc k f v))
(t : V)
:
L.IsUTerm t → P t
def
LO.Arith.Language.TermRec.Blueprint.blueprint
{arity : ℕ}
{pL : LO.FirstOrder.Arith.LDef}
(β : LO.Arith.Language.TermRec.Blueprint pL arity)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Arith.Language.TermRec.Blueprint.graph
{arity : ℕ}
{pL : LO.FirstOrder.Arith.LDef}
(β : LO.Arith.Language.TermRec.Blueprint pL arity)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Arith.Language.TermRec.Blueprint.result
{arity : ℕ}
{pL : LO.FirstOrder.Arith.LDef}
(β : LO.Arith.Language.TermRec.Blueprint pL arity)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Arith.Language.TermRec.Blueprint.resultVec
{arity : ℕ}
{pL : LO.FirstOrder.Arith.LDef}
(β : LO.Arith.Language.TermRec.Blueprint pL arity)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
LO.Arith.Language.TermRec.Construction
(V : Type u_1)
[LO.ORingStruc V]
{pL : LO.FirstOrder.Arith.LDef}
(L : LO.Arith.Language V)
{k : ℕ}
(φ : LO.Arith.Language.TermRec.Blueprint pL k)
:
Type u_1
- bvar : (Fin k → V) → V → V
- fvar : (Fin k → V) → V → V
- func : (Fin k → V) → V → V → V → V → V
- bvar_defined : LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction (fun (v : Fin (k + 1) → V) => self.bvar (fun (x : Fin k) => v x.succ) (v 0)) φ.bvar
- fvar_defined : LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction (fun (v : Fin (k + 1) → V) => self.fvar (fun (x : Fin k) => v x.succ) (v 0)) φ.fvar
Instances For
def
LO.Arith.Language.TermRec.Construction.Phi
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
(C : Set V)
(pr : V)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.Language.TermRec.Construction.seq_bound
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{k s m : V}
(Ss : LO.Arith.Seq s)
(hk : k = LO.Arith.lh s)
(hs : ∀ (i z : V), ⟪i, z⟫ ∈ s → z < m)
:
def
LO.Arith.Language.TermRec.Construction.construction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
:
LO.Arith.Fixpoint.Construction V β.blueprint
Equations
- c.construction = { Φ := c.Phi, defined := ⋯, monotone := ⋯ }
Instances For
instance
LO.Arith.Language.TermRec.Construction.instFiniteConstruction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
:
LO.Arith.Fixpoint.Construction.Finite V c.construction
Equations
- ⋯ = ⋯
def
LO.Arith.Language.TermRec.Construction.Graph
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
(x y : V)
:
Equations
- c.Graph param x y = c.construction.Fixpoint param ⟪x, y⟫
Instances For
theorem
LO.Arith.Language.TermRec.Construction.Graph.case_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
{param : Fin arity → V}
{t y : V}
:
c.Graph param t y ↔ L.IsUTerm t ∧ ((∃ (z : V), t = LO.Arith.qqBvar z ∧ y = c.bvar param z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x ∧ y = c.fvar param x) ∨ ∃ (k : V) (f : V) (v : V) (w : V),
(k = LO.Arith.len w ∧ ∀ i < k, c.Graph param (LO.Arith.nth v i) (LO.Arith.nth w i)) ∧ t = LO.Arith.qqFunc k f v ∧ y = c.func param k f v w)
theorem
LO.Arith.Language.TermRec.Construction.graph_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
:
LO.FirstOrder.Arith.HierarchySymbol.Defined
(fun (v : Fin (arity + 1 + 1) → V) => c.Graph (fun (x : Fin arity) => v x.succ.succ) (v 0) (v 1)) β.graph
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.eval_graphDef
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(v : Fin (arity + 2) → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val β.graph) ↔ c.Graph (fun (x : Fin arity) => v x.succ.succ) (v 0) (v 1)
instance
LO.Arith.Language.TermRec.Construction.graph_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
:
Equations
- ⋯ = ⋯
instance
LO.Arith.Language.TermRec.Construction.graph_definable₂
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
:
Equations
- ⋯ = ⋯
theorem
LO.Arith.Language.TermRec.Construction.graph_dom_isUTerm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
{param : Fin arity → V}
{t y : V}
:
c.Graph param t y → L.IsUTerm t
theorem
LO.Arith.Language.TermRec.Construction.graph_bvar_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
{param : Fin arity → V}
{y z : V}
:
c.Graph param (LO.Arith.qqBvar z) y ↔ y = c.bvar param z
theorem
LO.Arith.Language.TermRec.Construction.graph_fvar_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
{param : Fin arity → V}
{y : V}
(x : V)
:
c.Graph param (LO.Arith.qqFvar x) y ↔ y = c.fvar param x
theorem
LO.Arith.Language.TermRec.Construction.graph_func
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
{param : Fin arity → V}
{k f v w : V}
(hkr : L.Func k f)
(hv : L.IsUTermVec k v)
(hkw : k = LO.Arith.len w)
(hw : ∀ i < k, c.Graph param (LO.Arith.nth v i) (LO.Arith.nth w i))
:
c.Graph param (LO.Arith.qqFunc k f v) (c.func param k f v w)
theorem
LO.Arith.Language.TermRec.Construction.graph_func_inv
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
{param : Fin arity → V}
{k f v y : V}
:
c.Graph param (LO.Arith.qqFunc k f v) y →
∃ (w : V),
(k = LO.Arith.len w ∧ ∀ i < k, c.Graph param (LO.Arith.nth v i) (LO.Arith.nth w i)) ∧ y = c.func param k f v w
theorem
LO.Arith.Language.TermRec.Construction.graph_exists
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
(param : Fin arity → V)
{t : V}
:
L.IsUTerm t → ∃ (y : V), c.Graph param t y
theorem
LO.Arith.Language.TermRec.Construction.graph_unique
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
(param : Fin arity → V)
{t y₁ y₂ : V}
:
c.Graph param t y₁ → c.Graph param t y₂ → y₁ = y₂
theorem
LO.Arith.Language.TermRec.Construction.graph_existsUnique
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{t : V}
(ht : L.IsUTerm t)
:
∃! y : V, c.Graph param t y
theorem
LO.Arith.Language.TermRec.Construction.graph_existsUnique_total
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
(t : V)
:
def
LO.Arith.Language.TermRec.Construction.result
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
(t : V)
:
V
Equations
- c.result param t = Classical.choose! ⋯
Instances For
def
LO.Arith.Language.TermRec.Construction.result_prop
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{t : V}
(ht : L.IsUTerm t)
:
c.Graph param t (c.result param t)
Equations
- ⋯ = ⋯
Instances For
def
LO.Arith.Language.TermRec.Construction.result_prop_not
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{t : V}
(ht : ¬L.IsUTerm t)
:
c.result param t = 0
Equations
- ⋯ = ⋯
Instances For
theorem
LO.Arith.Language.TermRec.Construction.result_eq_of_graph
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
{param : Fin arity → V}
{t y : V}
(ht : L.IsUTerm t)
(h : c.Graph param t y)
:
c.result param t = y
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.result_bvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
{param : Fin arity → V}
(z : V)
:
c.result param (LO.Arith.qqBvar z) = c.bvar param z
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.result_fvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
{param : Fin arity → V}
(x : V)
:
c.result param (LO.Arith.qqFvar x) = c.fvar param x
theorem
LO.Arith.Language.TermRec.Construction.result_func
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
{param : Fin arity → V}
{k f v w : V}
(hkf : L.Func k f)
(hv : L.IsUTermVec k v)
(hkw : k = LO.Arith.len w)
(hw : ∀ i < k, c.result param (LO.Arith.nth v i) = LO.Arith.nth w i)
:
c.result param (LO.Arith.qqFunc k f v) = c.func param k f v w
theorem
LO.Arith.Language.TermRec.Construction.graph_existsUnique_vec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
{c : LO.Arith.Language.TermRec.Construction V L β}
{param : Fin arity → V}
{k w : V}
(hw : L.IsUTermVec k w)
:
∃! w' : V, k = LO.Arith.len w' ∧ ∀ i < k, c.Graph param (LO.Arith.nth w i) (LO.Arith.nth w' i)
theorem
LO.Arith.Language.TermRec.Construction.graph_existsUnique_vec_total
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
(k w : V)
:
∃! w' : V,
(L.IsUTermVec k w → k = LO.Arith.len w' ∧ ∀ i < k, c.Graph param (LO.Arith.nth w i) (LO.Arith.nth w' i)) ∧ (¬L.IsUTermVec k w → w' = 0)
def
LO.Arith.Language.TermRec.Construction.resultVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
(k w : V)
:
V
Equations
- c.resultVec param k w = Classical.choose! ⋯
Instances For
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.resultVec_lh
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{k w : V}
(hw : L.IsUTermVec k w)
:
LO.Arith.len (c.resultVec param k w) = k
theorem
LO.Arith.Language.TermRec.Construction.graph_of_mem_resultVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{k w : V}
(hw : L.IsUTermVec k w)
{i : V}
(hi : i < k)
:
c.Graph param (LO.Arith.nth w i) (LO.Arith.nth (c.resultVec param k w) i)
theorem
LO.Arith.Language.TermRec.Construction.nth_resultVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{k w i : V}
(hw : L.IsUTermVec k w)
(hi : i < k)
:
LO.Arith.nth (c.resultVec param k w) i = c.result param (LO.Arith.nth w i)
@[simp]
def
LO.Arith.Language.TermRec.Construction.resultVec_of_not
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{k w : V}
(hw : ¬L.IsUTermVec k w)
:
c.resultVec param k w = 0
Equations
- ⋯ = ⋯
Instances For
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.resultVec_nil
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
:
c.resultVec param 0 0 = 0
theorem
LO.Arith.Language.TermRec.Construction.resultVec_cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(param : Fin arity → V)
{k w t : V}
(hw : L.IsUTermVec k w)
(ht : L.IsUTerm t)
:
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.result_func'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
{param : Fin arity → V}
{k f v : V}
(hkf : L.Func k f)
(hv : L.IsUTermVec k v)
:
c.result param (LO.Arith.qqFunc k f v) = c.func param k f v (c.resultVec param k v)
theorem
LO.Arith.Language.TermRec.Construction.result_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
:
LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction
(fun (v : Fin (arity + 1) → V) => c.result (fun (x : Fin arity) => v x.succ) (v 0)) β.result
@[simp]
theorem
LO.Arith.Language.TermRec.Construction.result_graphDef
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(v : Fin (arity + 2) → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val β.result) ↔ v 0 = c.result (fun (x : Fin arity) => v x.succ.succ) (v 1)
theorem
LO.Arith.Language.TermRec.Construction.resultVec_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
:
LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction
(fun (v : Fin (arity + 1 + 1) → V) => c.resultVec (fun (x : Fin arity) => v x.succ.succ) (v 0) (v 1)) β.resultVec
theorem
LO.Arith.Language.TermRec.Construction.eval_resultVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{arity : ℕ}
{β : LO.Arith.Language.TermRec.Blueprint pL arity}
(c : LO.Arith.Language.TermRec.Construction V L β)
(v : Fin (arity + 3) → V)
:
V ⊧/v (LO.FirstOrder.Arith.HierarchySymbol.Semiformula.val β.resultVec) ↔ v 0 = c.resultVec (fun (x : Fin arity) => v x.succ.succ.succ) (v 1) (v 2)
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Arith.IsUTerm.BV.construction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
LO.Arith.Language.termBV
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(t : V)
:
V
Equations
- L.termBV t = (LO.Arith.IsUTerm.BV.construction L).result ![] t
Instances For
def
LO.Arith.Language.termBVVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(k v : V)
:
V
Equations
- L.termBVVec k v = (LO.Arith.IsUTerm.BV.construction L).resultVec ![] k v
Instances For
@[simp]
theorem
LO.Arith.Language.termBV_bvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(z : V)
:
L.termBV (LO.Arith.qqBvar z) = z + 1
@[simp]
theorem
LO.Arith.Language.termBV_fvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(x : V)
:
L.termBV (LO.Arith.qqFvar x) = 0
@[simp]
theorem
LO.Arith.Language.termBV_func
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k f v : V}
(hkf : L.Func k f)
(hv : L.IsUTermVec k v)
:
L.termBV (LO.Arith.qqFunc k f v) = LO.Arith.listMax (L.termBVVec k v)
@[simp]
theorem
LO.Arith.Language.len_termBVVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k v : V}
(hv : L.IsUTermVec k v)
:
LO.Arith.len (L.termBVVec k v) = k
@[simp]
theorem
LO.Arith.Language.nth_termBVVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k v : V}
(hv : L.IsUTermVec k v)
{i : V}
(hi : i < k)
:
LO.Arith.nth (L.termBVVec k v) i = L.termBV (LO.Arith.nth v i)
@[simp]
theorem
LO.Arith.Language.termBVVec_nil
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
L.termBVVec 0 0 = 0
theorem
LO.Arith.Language.termBVVec_cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k t ts : V}
(ht : L.IsUTerm t)
(hts : L.IsUTermVec k ts)
:
Equations
- pL.termBVDef = (LO.Arith.IsUTerm.BV.blueprint pL).result
Instances For
Equations
- pL.termBVVecDef = (LO.Arith.IsUTerm.BV.blueprint pL).resultVec
Instances For
theorem
LO.Arith.Language.termBV_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚺₁-Function₁ L.termBV via pL.termBVDef
instance
LO.Arith.Language.termBV_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚺₁-Function₁ L.termBV
Equations
- ⋯ = ⋯
instance
LO.Arith.Language.termBV_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{Γ : LO.SigmaPiDelta}
{k : ℕ}
:
{ Γ := Γ, rank := k + 1 }-Function₁ L.termBV
Equations
- ⋯ = ⋯
theorem
LO.Arith.Language.termBVVec_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
LO.FirstOrder.Arith.HierarchySymbol.DefinedFunction (fun (v : Fin 2 → V) => L.termBVVec (v 0) (v 1)) pL.termBVVecDef
instance
LO.Arith.Language.termBVVec_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚺₁-Function₂ L.termBVVec
Equations
- ⋯ = ⋯
instance
LO.Arith.Language.termBVVec_definable'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{Γ : LO.SigmaPiDelta}
{i : ℕ}
:
{ Γ := Γ, rank := i + 1 }-Function₂ L.termBVVec
Equations
- ⋯ = ⋯
def
LO.Arith.Language.IsSemiterm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(n t : V)
:
Instances For
def
LO.Arith.Language.IsSemitermVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(k n v : V)
:
Equations
- L.IsSemitermVec k n v = (L.IsUTermVec k v ∧ ∀ i < k, L.termBV (LO.Arith.nth v i) ≤ n)
Instances For
@[reducible, inline]
abbrev
LO.Arith.Language.IsTerm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(t : V)
:
Equations
- L.IsTerm t = L.IsSemiterm 0 t
Instances For
@[reducible, inline]
abbrev
LO.Arith.Language.IsTermVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(k v : V)
:
Equations
- L.IsTermVec k v = L.IsSemitermVec k 0 v
Instances For
theorem
LO.Arith.Language.IsSemiterm.isUTerm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t : V}
(h : L.IsSemiterm n t)
:
L.IsUTerm t
theorem
LO.Arith.Language.IsSemiterm.bv
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t : V}
(h : L.IsSemiterm n t)
:
L.termBV t ≤ n
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.isUTerm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n v : V}
(h : L.IsSemitermVec k n v)
:
L.IsUTermVec k v
theorem
LO.Arith.Language.IsSemitermVec.bv
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n v : V}
(h : L.IsSemitermVec k n v)
{i : V}
(hi : i < k)
:
L.termBV (LO.Arith.nth v i) ≤ n
theorem
LO.Arith.Language.IsSemitermVec.lh
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n v : V}
(h : L.IsSemitermVec k n v)
:
LO.Arith.len v = k
theorem
LO.Arith.Language.IsSemitermVec.nth
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n v : V}
(h : L.IsSemitermVec k n v)
{i : V}
(hi : i < k)
:
L.IsSemiterm n (LO.Arith.nth v i)
theorem
LO.Arith.Language.IsUTerm.isSemiterm
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{t : V}
(h : L.IsUTerm t)
:
L.IsSemiterm (L.termBV t) t
theorem
LO.Arith.Language.IsUTermVec.isSemitermVec
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k v : V}
(h : L.IsUTermVec k v)
:
L.IsSemitermVec k (LO.Arith.listMax (L.termBVVec k v)) v
theorem
LO.Arith.Language.IsSemitermVec.iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n v : V}
:
L.IsSemitermVec k n v ↔ LO.Arith.len v = k ∧ ∀ i < k, L.IsSemiterm n (LO.Arith.nth v i)
@[simp]
theorem
LO.Arith.Language.IsSemiterm.bvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n z : V}
:
L.IsSemiterm n (LO.Arith.qqBvar z) ↔ z < n
@[simp]
theorem
LO.Arith.Language.IsSemiterm.fvar
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(n x : V)
:
L.IsSemiterm n (LO.Arith.qqFvar x)
@[simp]
theorem
LO.Arith.Language.IsSemiterm.func
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n k f v : V}
:
L.IsSemiterm n (LO.Arith.qqFunc k f v) ↔ L.Func k f ∧ L.IsSemitermVec k n v
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.empty
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(n : V)
:
L.IsSemitermVec 0 n 0
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.empty_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{v n : V}
:
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.cons_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n w t : V}
:
theorem
LO.Arith.Language.SemitermVec.cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n m w t : V}
(h : L.IsSemitermVec n m w)
(ht : L.IsSemiterm m t)
:
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.singleton
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t : V}
:
L.IsSemitermVec 1 n ?[t] ↔ L.IsSemiterm n t
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.doubleton
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t₁ t₂ : V}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.Language.isSemiterm_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
instance
LO.Arith.Language.isSemiterm_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
Equations
- ⋯ = ⋯
instance
LO.Arith.Language.isSemiterm_defined'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(Γ : LO.SigmaPiDelta)
(m : ℕ)
:
Equations
- ⋯ = ⋯
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.Arith.Language.isSemitermVec_defined
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚫₁-Relation₃ L.IsSemitermVec via pL.isSemitermVecDef
instance
LO.Arith.Language.isSemitermVec_definable
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
:
𝚫₁-Relation₃ L.IsSemitermVec
Equations
- ⋯ = ⋯
instance
LO.Arith.Language.isSemitermVec_defined'
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
(L : LO.Arith.Language V)
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(Γ : LO.SigmaPiDelta)
(m : ℕ)
:
{ Γ := Γ, rank := m + 1 }-Relation₃ L.IsSemitermVec
Equations
- ⋯ = ⋯
theorem
LO.Arith.Language.IsSemiterm.case_iff
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t : V}
:
L.IsSemiterm n t ↔ (∃ z < n, t = LO.Arith.qqBvar z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x) ∨ ∃ (k : V) (f : V) (v : V), L.Func k f ∧ L.IsSemitermVec k n v ∧ t = LO.Arith.qqFunc k f v
theorem
LO.Arith.Language.IsSemiterm.case
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t : V}
:
L.IsSemiterm n t →
(∃ z < n, t = LO.Arith.qqBvar z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x) ∨ ∃ (k : V) (f : V) (v : V), L.Func k f ∧ L.IsSemitermVec k n v ∧ t = LO.Arith.qqFunc k f v
Alias of the forward direction of LO.Arith.Language.IsSemiterm.case_iff
.
theorem
LO.Arith.Language.IsSemiterm.mk
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n t : V}
:
((∃ z < n, t = LO.Arith.qqBvar z) ∨ (∃ (x : V), t = LO.Arith.qqFvar x) ∨ ∃ (k : V) (f : V) (v : V), L.Func k f ∧ L.IsSemitermVec k n v ∧ t = LO.Arith.qqFunc k f v) →
L.IsSemiterm n t
Alias of the reverse direction of LO.Arith.Language.IsSemiterm.case_iff
.
theorem
LO.Arith.Language.IsSemiterm.induction
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{n : V}
(Γ : LO.SigmaPiDelta)
{P : V → Prop}
(hP : { Γ := Γ, rank := 1 }-Predicate P)
(hbvar : ∀ z < n, P (LO.Arith.qqBvar z))
(hfvar : ∀ (x : V), P (LO.Arith.qqFvar x))
(hfunc :
∀ (k f v : V), L.Func k f → L.IsSemitermVec k n v → (∀ i < k, P (LO.Arith.nth v i)) → P (LO.Arith.qqFunc k f v))
(t : V)
:
L.IsSemiterm n t → P t
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.nil
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
(k : V)
:
L.IsSemitermVec 0 k 0
@[simp]
theorem
LO.Arith.Language.IsSemitermVec.cons
{V : Type u_1}
[LO.ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₁]
{L : LO.Arith.Language V}
{pL : LO.FirstOrder.Arith.LDef}
[L.Defined pL]
{k n w t : V}
(h : L.IsSemitermVec n k w)
(ht : L.IsSemiterm k t)
: