Equations
- instConsSet α = { cons := insert }
Equations
- instConsList α = { cons := List.cons }
Equations
- instConsMultiset α = { cons := Multiset.cons }
Equations
- instConsFinsetOfDecidableEq α = { cons := insert }
class
Collection
(β : outParam (Type u_1))
(α : Type u_2)
extends Membership β α, HasSubset α, EmptyCollection α, Cons β α :
Type (max u_1 u_2)
- emptyCollection : α
- cons : β → α → α
- not_mem_empty (x : β) : x ∉ ∅
Instances
Equations
- Set.collection = Collection.mk ⋯ ⋯ ⋯
Equations
- List.collection = Collection.mk ⋯ ⋯ ⋯
Equations
Equations
- Finset.collection = Collection.mk ⋯ ⋯ ⋯
Equations
- Collection.set a = {x : β | x ∈ a}
Instances For
@[simp]
theorem
Collection.subset_iff_set_subset_set
{β : Type u_1}
{α : Type u_2}
[Collection β α]
{a b : α}
:
@[simp]
theorem
Collection.subset_trans
{β : Type u_1}
{α : Type u_2}
[Collection β α]
{a b c : α}
(ha : a ⊆ b)
(hb : b ⊆ c)
:
a ⊆ c
theorem
Collection.subset_antisymm
{β : Type u_1}
{α : Type u_2}
[Collection β α]
{a b : α}
(ha : a ⊆ b)
(hb : b ⊆ a)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Equations
- Collection.Finite a = (Collection.set a).Finite
Instances For
@[simp]
theorem
Collection.Finite.of_subset
{β : Type u_1}
{α : Type u_2}
[Collection β α]
{a b : α}
(ha : Finite a)
(h : b ⊆ a)
:
Finite b
@[simp]
Equations
- Collection.addList a [] = a
- Collection.addList a (x_1 :: xs) = cons x_1 (Collection.addList a xs)
Instances For
Equations
- s.toCollection = s.toList.toCollection
Instances For
@[simp]
theorem
Collection.mem_list_toCollection
{β : Type u_1}
{α : Type u_2}
[Collection β α]
{x : β}
{l : List β}
:
@[simp]
theorem
Collection.mem_finset_toCollection
{β : Type u_1}
{α : Type u_2}
[Collection β α]
{x : β}
{s : Finset β}
:
@[simp]
theorem
Collection.list_toCollection_finite
{β : Type u_1}
{α : Type u_2}
[Collection β α]
(l : List β)
:
Finite l.toCollection
@[simp]
theorem
Collection.finset_toCollection_finite
{β : Type u_1}
{α : Type u_2}
[Collection β α]
(s : Finset β)
:
Finite s.toCollection
@[simp]