def
LO.FirstOrder.LT.le
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiformula.Operator.Eq L]
[LO.FirstOrder.Semiformula.Operator.LT L]
:
Instances For
theorem
LO.FirstOrder.le_eq
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiformula.Operator.Eq L]
[LO.FirstOrder.Semiformula.Operator.LT L]
{μ : Type u_1}
{n : ℕ}
(t₁ : LO.FirstOrder.Semiterm L μ n)
(t₂ : LO.FirstOrder.Semiterm L μ n)
:
LO.FirstOrder.LT.le.operator ![t₁, t₂] = (“(!!t₁ = !!t₂ ∨ !!t₁ < !!t₂)”)
noncomputable def
LO.FirstOrder.Order.leIffEqOrLt
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiformula.Operator.Eq L]
[LO.FirstOrder.Semiformula.Operator.LT L]
{T : LO.FirstOrder.Theory L}
:
T ⊢! (“∀'
∀'
(!!(LO.FirstOrder.Semiterm.bvar 1) ≤ !!(LO.FirstOrder.Semiterm.bvar 0) ↔
(!!(LO.FirstOrder.Semiterm.bvar 1) = !!(LO.FirstOrder.Semiterm.bvar 0) ∨
!!(LO.FirstOrder.Semiterm.bvar 1) < !!(LO.FirstOrder.Semiterm.bvar 0)))”)
Equations
- ⋯ = ⋯
Instances For
theorem
LO.FirstOrder.Order.provOf
{L : LO.FirstOrder.Language}
[LO.FirstOrder.Semiformula.Operator.Eq L]
[LO.FirstOrder.Semiformula.Operator.LT L]
{T : LO.FirstOrder.Theory L}
[𝐄𝐐 ≼ T]
(p : LO.FirstOrder.SyntacticFormula L)
(H : ∀ (M : Type (max u w)) [inst : Nonempty M] [inst_1 : LT M] [inst_2 : LO.FirstOrder.Structure L M]
[inst_3 : LO.FirstOrder.Structure.Eq L M] [inst_4 : LO.FirstOrder.Structure.LT L M] [inst_5 : M ⊧ₘ* T], M ⊧ₘ p)
:
T ⊨ p