Formulas of intuitionistic first-order logic #
This file defines the formulas of first-order logic.
φ : Semiformulaᵢ L ξ n
is a (semi-)formula of language L
with bounded variables of Fin n
and free variables of ξ
.
The quantification is represented by de Bruijn index.
- verum {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ n
- falsum {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ n
- rel {L : Language} {ξ : Type u_1} {n arity : ℕ} : L.Rel arity → (Fin arity → Semiterm L ξ n) → Semiformulaᵢ L ξ n
- and {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ n → Semiformulaᵢ L ξ n → Semiformulaᵢ L ξ n
- or {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ n → Semiformulaᵢ L ξ n → Semiformulaᵢ L ξ n
- imp {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ n → Semiformulaᵢ L ξ n → Semiformulaᵢ L ξ n
- all {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ (n + 1) → Semiformulaᵢ L ξ n
- ex {L : Language} {ξ : Type u_1} {n : ℕ} : Semiformulaᵢ L ξ (n + 1) → Semiformulaᵢ L ξ n
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
instance
LO.FirstOrder.Semiformulaᵢ.instBot
{L : Language}
{ξ : Type u_2}
{n : ℕ}
:
Bot (Semiformulaᵢ L ξ n)
Equations
instance
LO.FirstOrder.Semiformulaᵢ.instArrow
{L : Language}
{ξ : Type u_2}
{n : ℕ}
:
Arrow (Semiformulaᵢ L ξ n)
Equations
@[reducible, inline]
abbrev
LO.FirstOrder.Semiformulaᵢ.neg
{L : Language}
{ξ : Type u_2}
{n : ℕ}
(φ : Semiformulaᵢ L ξ n)
:
Semiformulaᵢ L ξ n
Instances For
instance
LO.FirstOrder.Semiformulaᵢ.instLogicalConnective
{L : Language}
{ξ : Type u_2}
{n : ℕ}
:
LogicalConnective (Semiformulaᵢ L ξ n)
theorem
LO.FirstOrder.Semiformulaᵢ.neg_def
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ n)
:
instance
LO.FirstOrder.Semiformulaᵢ.instQuantifier
{L : Language}
{ξ : Type u_2}
:
Quantifier (Semiformulaᵢ L ξ)
def
LO.FirstOrder.Semiformulaᵢ.toStr
{ξ : Type u_1}
{L : Language}
[(k : ℕ) → ToString (L.Func k)]
[(k : ℕ) → ToString (L.Rel k)]
[ToString ξ]
{n : ℕ}
:
Semiformulaᵢ L ξ n → String
Equations
- LO.FirstOrder.Semiformulaᵢ.verum.toStr = "\top"
- LO.FirstOrder.Semiformulaᵢ.falsum.toStr = "\bot"
- (LO.FirstOrder.Semiformulaᵢ.rel r a).toStr = "{" ++ toString r ++ "}"
- (LO.FirstOrder.Semiformulaᵢ.rel r v).toStr = ("{" ++ toString r ++ "} \left(" ++ String.vecToStr fun (i : Fin (n + 1)) => toString (v i)) ++ "\right)"
- (φ.and ψ).toStr = "\left(" ++ φ.toStr ++ " \land " ++ ψ.toStr ++ "\right)"
- (φ.or ψ).toStr = "\left(" ++ φ.toStr ++ " \lor " ++ ψ.toStr ++ "\right)"
- (φ.imp ψ).toStr = "\left(" ++ φ.toStr ++ " \to " ++ ψ.toStr ++ "\right)"
- φ.all.toStr = "(\forall x_{" ++ toString x✝ ++ "}) " ++ φ.toStr
- φ.ex.toStr = "(\exists x_{" ++ toString x✝ ++ "}) " ++ φ.toStr
Instances For
instance
LO.FirstOrder.Semiformulaᵢ.instRepr
{ξ : Type u_1}
{L : Language}
[(k : ℕ) → ToString (L.Func k)]
[(k : ℕ) → ToString (L.Rel k)]
[ToString ξ]
{n : ℕ}
:
Repr (Semiformulaᵢ L ξ n)
Equations
- LO.FirstOrder.Semiformulaᵢ.instRepr = { reprPrec := fun (t : LO.FirstOrder.Semiformulaᵢ L ξ n) (x : ℕ) => Std.Format.text t.toStr }
instance
LO.FirstOrder.Semiformulaᵢ.instToString
{ξ : Type u_1}
{L : Language}
[(k : ℕ) → ToString (L.Func k)]
[(k : ℕ) → ToString (L.Rel k)]
[ToString ξ]
{n : ℕ}
:
ToString (Semiformulaᵢ L ξ n)
Equations
- LO.FirstOrder.Semiformulaᵢ.instToString = { toString := LO.FirstOrder.Semiformulaᵢ.toStr }
def
LO.FirstOrder.Semiformulaᵢ.complexity
{L : Language}
{ξ : Type u_2}
{n : ℕ}
:
Semiformulaᵢ L ξ n → ℕ
Equations
- LO.FirstOrder.Semiformulaᵢ.verum.complexity = 0
- LO.FirstOrder.Semiformulaᵢ.falsum.complexity = 0
- (LO.FirstOrder.Semiformulaᵢ.rel a a_1).complexity = 0
- (φ.and ψ).complexity = φ.complexity ⊔ ψ.complexity + 1
- (φ.or ψ).complexity = φ.complexity ⊔ ψ.complexity + 1
- (φ.imp ψ).complexity = φ.complexity ⊔ ψ.complexity + 1
- φ.all.complexity = φ.complexity + 1
- φ.ex.complexity = φ.complexity + 1
Instances For
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_and
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_and'
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_or
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_or'
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_imp
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_imp'
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_all
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_all'
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_ex
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_ex'
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ (n + 1))
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.complexity_neg
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ n)
:
def
LO.FirstOrder.Semiformulaᵢ.cases'
{L : Language}
{ξ : Type u_2}
{C : (n : ℕ) → Semiformulaᵢ L ξ n → Sort w}
(hRel : {n k : ℕ} → (r : L.Rel k) → (v : Fin k → Semiterm L ξ n) → C n (rel r v))
(hVerum : {n : ℕ} → C n ⊤)
(hFalsum : {n : ℕ} → C n ⊥)
(hAnd : {n : ℕ} → (φ ψ : Semiformulaᵢ L ξ n) → C n (φ ⋏ ψ))
(hOr : {n : ℕ} → (φ ψ : Semiformulaᵢ L ξ n) → C n (φ ⋎ ψ))
(hImp : {n : ℕ} → (φ ψ : Semiformulaᵢ L ξ n) → C n (φ ➝ ψ))
(hAll : {n : ℕ} → (φ : Semiformulaᵢ L ξ (n + 1)) → C n (∀' φ))
(hEx : {n : ℕ} → (φ : Semiformulaᵢ L ξ (n + 1)) → C n (∃' φ))
{n : ℕ}
(φ : Semiformulaᵢ L ξ n)
:
C n φ
Equations
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx (LO.FirstOrder.Semiformulaᵢ.rel r v) = hRel r v
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx LO.FirstOrder.Semiformulaᵢ.verum = hVerum
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx LO.FirstOrder.Semiformulaᵢ.falsum = hFalsum
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx (φ.and ψ) = hAnd φ ψ
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx (φ.or ψ) = hOr φ ψ
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx (φ.imp ψ) = hImp φ ψ
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx φ.all = hAll φ
- LO.FirstOrder.Semiformulaᵢ.cases' hRel hVerum hFalsum hAnd hOr hImp hAll hEx φ.ex = hEx φ
Instances For
def
LO.FirstOrder.Semiformulaᵢ.rec'
{L : Language}
{ξ : Type u_2}
{C : (n : ℕ) → Semiformulaᵢ L ξ n → Sort w}
(hRel : {n k : ℕ} → (r : L.Rel k) → (v : Fin k → Semiterm L ξ n) → C n (rel r v))
(hVerum : {n : ℕ} → C n ⊤)
(hFalsum : {n : ℕ} → C n ⊥)
(hAnd : {n : ℕ} → (φ ψ : Semiformulaᵢ L ξ n) → C n φ → C n ψ → C n (φ ⋏ ψ))
(hOr : {n : ℕ} → (φ ψ : Semiformulaᵢ L ξ n) → C n φ → C n ψ → C n (φ ⋎ ψ))
(hImp : {n : ℕ} → (φ ψ : Semiformulaᵢ L ξ n) → C n φ → C n ψ → C n (φ ➝ ψ))
(hAll : {n : ℕ} → (φ : Semiformulaᵢ L ξ (n + 1)) → C (n + 1) φ → C n (∀' φ))
(hEx : {n : ℕ} → (φ : Semiformulaᵢ L ξ (n + 1)) → C (n + 1) φ → C n (∃' φ))
{n : ℕ}
(φ : Semiformulaᵢ L ξ n)
:
C n φ
Equations
- One or more equations did not get rendered due to their size.
- LO.FirstOrder.Semiformulaᵢ.rec' hRel hVerum hFalsum hAnd hOr hImp hAll hEx (LO.FirstOrder.Semiformulaᵢ.rel r v) = hRel r v
- LO.FirstOrder.Semiformulaᵢ.rec' hRel hVerum hFalsum hAnd hOr hImp hAll hEx LO.FirstOrder.Semiformulaᵢ.verum = hVerum
- LO.FirstOrder.Semiformulaᵢ.rec' hRel hVerum hFalsum hAnd hOr hImp hAll hEx LO.FirstOrder.Semiformulaᵢ.falsum = hFalsum
Instances For
def
LO.FirstOrder.Semiformulaᵢ.hasDecEq
{ξ : Type u_1}
{L : Language}
[L.DecidableEq]
[DecidableEq ξ]
{n : ℕ}
(φ ψ : Semiformulaᵢ L ξ n)
:
Instances For
instance
LO.FirstOrder.Semiformulaᵢ.instDecidableEq
{ξ : Type u_1}
{L : Language}
[L.DecidableEq]
[DecidableEq ξ]
{n : ℕ}
:
DecidableEq (Semiformulaᵢ L ξ n)
@[reducible, inline]
Equations
Instances For
@[reducible, inline]
Equations
Instances For
Equations
- LO.FirstOrder.Theoryᵢ.instAdd = { add := fun (x1 x2 : LO.FirstOrder.Theoryᵢ L) => x1 ∪ x2 }
(Weak) Negative Formula
inductive
LO.FirstOrder.Semiformulaᵢ.IsNegative
{L : Language}
{ξ : Type u_2}
{n : ℕ}
:
Semiformulaᵢ L ξ n → Prop
- falsum {L : Language} {ξ : Type u_2} {n : ℕ} : ⊥.IsNegative
- and {L : Language} {ξ : Type u_2} {n : ℕ} {φ ψ : Semiformulaᵢ L ξ n} : φ.IsNegative → ψ.IsNegative → (φ ⋏ ψ).IsNegative
- imply {L : Language} {ξ : Type u_2} {n : ℕ} {φ ψ : Semiformulaᵢ L ξ n} : ψ.IsNegative → (φ ➝ ψ).IsNegative
- all {L : Language} {ξ : Type u_2} {n : ℕ} {φ : Semiformulaᵢ L ξ (n + 1)} : φ.IsNegative → (∀' φ).IsNegative
Instances For
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.IsNegative.and_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ ψ : Semiformulaᵢ L ξ n}
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.IsNegative.imp_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ ψ : Semiformulaᵢ L ξ n}
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.IsNegative.all_iff
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ : Semiformulaᵢ L ξ (n + 1)}
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.IsNegative.not_or
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ ψ : Semiformulaᵢ L ξ n}
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.IsNegative.not_ex
{L : Language}
{ξ : Type u_1}
{n : ℕ}
{φ : Semiformulaᵢ L ξ (n + 1)}
:
@[simp]
theorem
LO.FirstOrder.Semiformulaᵢ.IsNegative.neg
{L : Language}
{ξ : Type u_1}
{n : ℕ}
(φ : Semiformulaᵢ L ξ n)
:
(∼φ).IsNegative