Equations
Instances For
Equations
- LO.IntProp.Tableau.instHasSubset = { Subset := fun (t₁ t₂ : LO.IntProp.Tableau α) => t₁.1 ⊆ t₂.1 ∧ t₁.2 ⊆ t₂.2 }
theorem
LO.IntProp.Tableau.consistent_either
{α : Type u}
{H : Hilbert α}
[DecidableEq α]
[H.IncludeEFQ]
{t : Tableau α}
(hCon : Consistent H t)
(φ : Formula α)
:
Consistent H (insert φ t.1, t.2) ∨ Consistent H (t.1, insert φ t.2)
theorem
LO.IntProp.Tableau.disjoint_of_consistent
{α : Type u}
{H : Hilbert α}
{t : Tableau α}
(hCon : Consistent H t)
:
Disjoint t.1 t.2
@[reducible, inline]
Equations
- t.Saturated = ∀ (φ : LO.IntProp.Formula α), φ ∈ t.1 ∨ φ ∈ t.2
theorem
LO.IntProp.Tableau.not_mem₁_iff_mem₂
{α : Type u}
{H : Hilbert α}
{φ : Formula α}
{t : Tableau α}
(hCon : Consistent H t)
(hMat : t.Saturated)
:
theorem
LO.IntProp.Tableau.not_mem₂_iff_mem₁
{α : Type u}
{H : Hilbert α}
{φ : Formula α}
{t : Tableau α}
(hCon : Consistent H t)
(hMat : t.Saturated)
:
theorem
LO.IntProp.Tableau.saturated_duality
{α : Type u}
{H : Hilbert α}
{t₁ t₂ : Tableau α}
(ct₁ : Consistent H t₁)
(ct₂ : Consistent H t₂)
(st₁ : t₁.Saturated)
(st₂ : t₂.Saturated)
:
theorem
LO.IntProp.Tableau.self_consistent
{α : Type u}
{H : Hilbert α}
[H.IncludeEFQ]
[h : H.Consistent]
:
Consistent H (H.axioms, ∅)
def
LO.IntProp.Tableau.lindenbaum_next
{α : Type u}
(H : Hilbert α)
(φ : Formula α)
(t : Tableau α)
:
Tableau α
Equations
- LO.IntProp.Tableau.lindenbaum_next H φ t = if LO.IntProp.Tableau.Consistent H (insert φ t.1, t.2) then (insert φ t.1, t.2) else (t.1, insert φ t.2)
def
LO.IntProp.Tableau.lindenbaum_next_indexed
{α : Type u}
(H : Hilbert α)
[Encodable α]
(t : Tableau α)
:
Equations
- One or more equations did not get rendered due to their size.
- LO.IntProp.Tableau.lindenbaum_next_indexed H t 0 = t
def
LO.IntProp.Tableau.lindenbaum_maximal
{α : Type u}
(H : Hilbert α)
[Encodable α]
(t : Tableau α)
:
Tableau α
Equations
- LO.IntProp.Tableau.lindenbaum_maximal H t = (⋃ (i : ℕ), (LO.IntProp.Tableau.lindenbaum_next_indexed H t i).1, ⋃ (i : ℕ), (LO.IntProp.Tableau.lindenbaum_next_indexed H t i).2)
theorem
LO.IntProp.Tableau.next_parametericConsistent
{α : Type u}
{H : Hilbert α}
[H.IncludeEFQ]
{t : Tableau α}
(consistent : Consistent H t)
(φ : Formula α)
:
Consistent H (lindenbaum_next H φ t)
@[simp]
theorem
LO.IntProp.Tableau.lindenbaum_next_indexed_zero
{α : Type u}
{H : Hilbert α}
[Encodable α]
{t : Tableau α}
:
lindenbaum_next_indexed H t 0 = t
theorem
LO.IntProp.Tableau.lindenbaum_next_indexed_parametricConsistent_succ
{α : Type u}
{H : Hilbert α}
[H.IncludeEFQ]
[Encodable α]
{t : Tableau α}
{i : ℕ}
:
Consistent H (lindenbaum_next_indexed H t i) → Consistent H (lindenbaum_next_indexed H t (i + 1))
theorem
LO.IntProp.Tableau.mem_lindenbaum_next_indexed
{α : Type u}
{H : Hilbert α}
[Encodable α]
(t : Tableau α)
(φ : Formula α)
:
φ ∈ (lindenbaum_next_indexed H t (Encodable.encode φ + 1)).1 ∨ φ ∈ (lindenbaum_next_indexed H t (Encodable.encode φ + 1)).2
theorem
LO.IntProp.Tableau.lindenbaum_next_indexed_parametricConsistent
{α : Type u}
{H : Hilbert α}
[H.IncludeEFQ]
[Encodable α]
{t : Tableau α}
(consistent : Consistent H t)
(i : ℕ)
:
Consistent H (lindenbaum_next_indexed H t i)
theorem
LO.IntProp.Tableau.lindenbaum_next_indexed_subset₁_of_lt
{α : Type u}
{H : Hilbert α}
[Encodable α]
{t : Tableau α}
{m n : ℕ}
(h : m ≤ n)
:
(lindenbaum_next_indexed H t m).1 ⊆ (lindenbaum_next_indexed H t n).1
theorem
LO.IntProp.Tableau.lindenbaum_next_indexed_subset₂_of_lt
{α : Type u}
{H : Hilbert α}
[Encodable α]
{t : Tableau α}
{m n : ℕ}
(h : m ≤ n)
:
(lindenbaum_next_indexed H t m).2 ⊆ (lindenbaum_next_indexed H t n).2
theorem
LO.IntProp.Tableau.exists_parametricConsistent_saturated_tableau
{α : Type u}
{H : Hilbert α}
[H.IncludeEFQ]
[Encodable α]
{t : Tableau α}
(hCon : Consistent H t)
:
∃ (u : Tableau α), t ⊆ u ∧ Consistent H u ∧ u.Saturated
theorem
LO.IntProp.Tableau.lindenbaum
{α : Type u}
{H : Hilbert α}
[H.IncludeEFQ]
[Encodable α]
{t : Tableau α}
(hCon : Consistent H t)
:
∃ (u : Tableau α), t ⊆ u ∧ Consistent H u ∧ u.Saturated
Alias of LO.IntProp.Tableau.exists_parametricConsistent_saturated_tableau
.
- tableau : Tableau α
- saturated : self.tableau.Saturated
- consistent : Tableau.Consistent H self.tableau
Alias of LO.IntProp.SaturatedConsistentTableau
.
theorem
LO.IntProp.SaturatedConsistentTableau.lindenbaum
{α : Type u}
{H : Hilbert α}
{t₀ : Tableau α}
[H.IncludeEFQ]
[Encodable α]
(hCon : Tableau.Consistent H t₀)
:
∃ (t : SaturatedConsistentTableau H), t₀ ⊆ t.tableau
theorem
LO.IntProp.SaturatedConsistentTableau.not_mem₁_neg_of_mem₁
{α : Type u}
{H : Hilbert α}
{φ : Formula α}
{t : SCT H}
[DecidableEq α]
:
theorem
LO.IntProp.SaturatedConsistentTableau.mem₂_neg_of_mem₁
{α : Type u}
{H : Hilbert α}
{φ : Formula α}
{t : SCT H}
[DecidableEq α]
: