Documentation

Foundation.IntProp.Hilbert.Basic

structure LO.IntProp.Hilbert (α : Type u_1) :
Type u_1
Instances For
    Instances
      Instances
        Instances
          Instances For
            Equations
            • LO.IntProp.Hilbert.instSystemFormula = { Prf := LO.IntProp.Hilbert.Deduction }
            Equations
            • LO.IntProp.Hilbert.instMinimalFormula = LO.System.Minimal.mk
            Equations
            Equations
            Equations
            Equations
            • LO.IntProp.Hilbert.instIntuitionisticFormulaOfIncludeEFQ = LO.System.Intuitionistic.mk
            Equations
            • LO.IntProp.Hilbert.instClassicalFormulaOfIncludeDNE = LO.System.Classical.mk
            Equations
            • LO.IntProp.Hilbert.instClassicalFormulaOfDecidableEqOfIncludeEFQOfIncludeLEM = LO.System.Classical.mk
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                @[reducible, inline]
                Equations
                Instances For
                  Equations
                  • =
                  @[reducible, inline]
                  Equations
                  Instances For
                    Equations
                    • =
                    Equations
                    • =
                    @[reducible, inline]

                    KC from Chagrov & Zakharyaschev (1997)

                    Equations
                    Instances For
                      Equations
                      • =
                      @[reducible, inline]

                      LC from Chagrov & Zakharyaschev (1997)

                      Equations
                      Instances For
                        Equations
                        • =
                        @[reducible, inline]

                        WeakMinimal from Ariola (2007)

                        Equations
                        Instances For
                          @[reducible, inline]

                          WeakClassical from Ariola (2007)

                          Equations
                          Instances For
                            @[reducible, inline]
                            Equations
                            Instances For
                              theorem LO.IntProp.Hilbert.Deduction.eaxm! {α : Type u} {H : LO.IntProp.Hilbert α} {φ : LO.IntProp.Formula α} (h : φ H.axioms) :
                              H ⊢! φ
                              noncomputable def LO.IntProp.Hilbert.Deduction.rec! {α : Type u} {H : LO.IntProp.Hilbert α} {motive : (a : LO.IntProp.Formula α) → H ⊢! aSort u_1} (eaxm : {φ : LO.IntProp.Formula α} → (a : φ H.axioms) → motive φ ) (mdp : {φ ψ : LO.IntProp.Formula α} → {hpq : H ⊢! φ ψ} → {hp : H ⊢! φ} → motive (φ ψ) hpqmotive φ hpmotive ψ ) (verum : motive ) (imply₁ : {φ ψ : LO.IntProp.Formula α} → motive (φ ψ φ) ) (imply₂ : {φ ψ χ : LO.IntProp.Formula α} → motive ((φ ψ χ) (φ ψ) φ χ) ) (and₁ : {φ ψ : LO.IntProp.Formula α} → motive (φ ψ φ) ) (and₂ : {φ ψ : LO.IntProp.Formula α} → motive (φ ψ ψ) ) (and₃ : {φ ψ : LO.IntProp.Formula α} → motive (φ ψ φ ψ) ) (or₁ : {φ ψ : LO.IntProp.Formula α} → motive (φ φ ψ) ) (or₂ : {φ ψ : LO.IntProp.Formula α} → motive (ψ φ ψ) ) (or₃ : {φ ψ χ : LO.IntProp.Formula α} → motive ((φ χ) (ψ χ) φ ψ χ) ) (neg_equiv : {φ : LO.IntProp.Formula α} → motive (LO.Axioms.NegEquiv φ) ) {a : LO.IntProp.Formula α} (t : H ⊢! a) :
                              motive a t
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                theorem LO.IntProp.Hilbert.weaker_than_of_subset_axiomset' {α : Type u} {H₁ H₂ : LO.IntProp.Hilbert α} (hMaxm : ∀ {φ : LO.IntProp.Formula α}, φ H₁.axiomsH₂ ⊢! φ) :
                                H₁ ≤ₛ H₂
                                theorem LO.IntProp.Hilbert.weaker_than_of_subset_axiomset {α : Type u} {H₁ H₂ : LO.IntProp.Hilbert α} (hSubset : H₁.axioms H₂.axioms := by aesop) :
                                H₁ ≤ₛ H₂