- axioms : LO.IntProp.Theory α
Instances For
Instances
Instances
Instances
inductive
LO.IntProp.Hilbert.Deduction
{α : Type u}
(H : LO.IntProp.Hilbert α)
:
LO.IntProp.Formula α → Type u
- eaxm: {α : Type u} → {H : LO.IntProp.Hilbert α} → {φ : LO.IntProp.Formula α} → φ ∈ H.axioms → H.Deduction φ
- mdp: {α : Type u} → {H : LO.IntProp.Hilbert α} → {φ ψ : LO.IntProp.Formula α} → H.Deduction (φ ➝ ψ) → H.Deduction φ → H.Deduction ψ
- verum: {α : Type u} → {H : LO.IntProp.Hilbert α} → H.Deduction ⊤
- imply₁: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ : LO.IntProp.Formula α) → H.Deduction (φ ➝ ψ ➝ φ)
- imply₂: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ χ : LO.IntProp.Formula α) → H.Deduction ((φ ➝ ψ ➝ χ) ➝ (φ ➝ ψ) ➝ φ ➝ χ)
- and₁: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ : LO.IntProp.Formula α) → H.Deduction (φ ⋏ ψ ➝ φ)
- and₂: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ : LO.IntProp.Formula α) → H.Deduction (φ ⋏ ψ ➝ ψ)
- and₃: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ : LO.IntProp.Formula α) → H.Deduction (φ ➝ ψ ➝ φ ⋏ ψ)
- or₁: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ : LO.IntProp.Formula α) → H.Deduction (φ ➝ φ ⋎ ψ)
- or₂: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ : LO.IntProp.Formula α) → H.Deduction (ψ ➝ φ ⋎ ψ)
- or₃: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ ψ χ : LO.IntProp.Formula α) → H.Deduction ((φ ➝ χ) ➝ (ψ ➝ χ) ➝ φ ⋎ ψ ➝ χ)
- neg_equiv: {α : Type u} → {H : LO.IntProp.Hilbert α} → (φ : LO.IntProp.Formula α) → H.Deduction (LO.Axioms.NegEquiv φ)
Instances For
Equations
- LO.IntProp.Hilbert.instSystemFormula = { Prf := LO.IntProp.Hilbert.Deduction }
Equations
- LO.IntProp.Hilbert.instMinimalFormula = LO.System.Minimal.mk
instance
LO.IntProp.Hilbert.instHasAxiomEFQFormulaOfIncludeEFQ
{α : Type u}
{H : LO.IntProp.Hilbert α}
[H.IncludeEFQ]
:
Equations
- LO.IntProp.Hilbert.instHasAxiomEFQFormulaOfIncludeEFQ = { efq := fun (x : LO.IntProp.Formula α) => LO.IntProp.Hilbert.Deduction.eaxm ⋯ }
instance
LO.IntProp.Hilbert.instHasAxiomLEMFormulaOfIncludeLEM
{α : Type u}
{H : LO.IntProp.Hilbert α}
[H.IncludeLEM]
:
Equations
- LO.IntProp.Hilbert.instHasAxiomLEMFormulaOfIncludeLEM = { lem := fun (x : LO.IntProp.Formula α) => LO.IntProp.Hilbert.Deduction.eaxm ⋯ }
instance
LO.IntProp.Hilbert.instHasAxiomDNEFormulaOfIncludeDNE
{α : Type u}
{H : LO.IntProp.Hilbert α}
[H.IncludeDNE]
:
Equations
- LO.IntProp.Hilbert.instHasAxiomDNEFormulaOfIncludeDNE = { dne := fun (x : LO.IntProp.Formula α) => LO.IntProp.Hilbert.Deduction.eaxm ⋯ }
instance
LO.IntProp.Hilbert.instIntuitionisticFormulaOfIncludeEFQ
{α : Type u}
{H : LO.IntProp.Hilbert α}
[H.IncludeEFQ]
:
Equations
- LO.IntProp.Hilbert.instIntuitionisticFormulaOfIncludeEFQ = LO.System.Intuitionistic.mk
instance
LO.IntProp.Hilbert.instClassicalFormulaOfIncludeDNE
{α : Type u}
{H : LO.IntProp.Hilbert α}
[H.IncludeDNE]
:
Equations
- LO.IntProp.Hilbert.instClassicalFormulaOfIncludeDNE = LO.System.Classical.mk
instance
LO.IntProp.Hilbert.instClassicalFormulaOfDecidableEqOfIncludeEFQOfIncludeLEM
{α : Type u}
{H : LO.IntProp.Hilbert α}
[DecidableEq α]
[H.IncludeEFQ]
[H.IncludeLEM]
:
Equations
- LO.IntProp.Hilbert.instClassicalFormulaOfDecidableEqOfIncludeEFQOfIncludeLEM = LO.System.Classical.mk
@[reducible, inline]
Equations
- H.theorems = LO.System.theory H
Instances For
Equations
- ⋯ = ⋯
Equations
- LO.IntProp.Hilbert.instIntuitionisticFormulaInt α = LO.System.Intuitionistic.mk
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- LO.IntProp.Hilbert.instHasAxiomWeakLEMFormulaKC α = { wlem := fun (φ : LO.IntProp.Formula α) => LO.IntProp.Hilbert.Deduction.eaxm ⋯ }
Equations
- ⋯ = ⋯
Equations
- LO.IntProp.Hilbert.instHasAxiomDummettFormulaLC α = { dummett := fun (φ ψ : LO.IntProp.Formula α) => LO.IntProp.Hilbert.Deduction.eaxm ⋯ }
@[reducible, inline]
WeakMinimal
from Ariola (2007)
Equations
- LO.IntProp.Hilbert.WeakMinimal α = { axioms := 𝗟𝗘𝗠 }
Instances For
@[reducible, inline]
WeakClassical
from Ariola (2007)
Equations
- LO.IntProp.Hilbert.WeakClassical α = { axioms := 𝗣𝗲 }
Instances For
theorem
LO.IntProp.Hilbert.Deduction.eaxm!
{α : Type u}
{H : LO.IntProp.Hilbert α}
{φ : LO.IntProp.Formula α}
(h : φ ∈ H.axioms)
:
H ⊢! φ
noncomputable def
LO.IntProp.Hilbert.Deduction.rec!
{α : Type u}
{H : LO.IntProp.Hilbert α}
{motive : (a : LO.IntProp.Formula α) → H ⊢! a → Sort u_1}
(eaxm : {φ : LO.IntProp.Formula α} → (a : φ ∈ H.axioms) → motive φ ⋯)
(mdp :
{φ ψ : LO.IntProp.Formula α} → {hpq : H ⊢! φ ➝ ψ} → {hp : H ⊢! φ} → motive (φ ➝ ψ) hpq → motive φ hp → motive ψ ⋯)
(verum : motive ⊤ ⋯)
(imply₁ : {φ ψ : LO.IntProp.Formula α} → motive (φ ➝ ψ ➝ φ) ⋯)
(imply₂ : {φ ψ χ : LO.IntProp.Formula α} → motive ((φ ➝ ψ ➝ χ) ➝ (φ ➝ ψ) ➝ φ ➝ χ) ⋯)
(and₁ : {φ ψ : LO.IntProp.Formula α} → motive (φ ⋏ ψ ➝ φ) ⋯)
(and₂ : {φ ψ : LO.IntProp.Formula α} → motive (φ ⋏ ψ ➝ ψ) ⋯)
(and₃ : {φ ψ : LO.IntProp.Formula α} → motive (φ ➝ ψ ➝ φ ⋏ ψ) ⋯)
(or₁ : {φ ψ : LO.IntProp.Formula α} → motive (φ ➝ φ ⋎ ψ) ⋯)
(or₂ : {φ ψ : LO.IntProp.Formula α} → motive (ψ ➝ φ ⋎ ψ) ⋯)
(or₃ : {φ ψ χ : LO.IntProp.Formula α} → motive ((φ ➝ χ) ➝ (ψ ➝ χ) ➝ φ ⋎ ψ ➝ χ) ⋯)
(neg_equiv : {φ : LO.IntProp.Formula α} → motive (LO.Axioms.NegEquiv φ) ⋯)
{a : LO.IntProp.Formula α}
(t : H ⊢! a)
:
motive a t
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LO.IntProp.Hilbert.weaker_than_of_subset_axiomset'
{α : Type u}
{H₁ H₂ : LO.IntProp.Hilbert α}
(hMaxm : ∀ {φ : LO.IntProp.Formula α}, φ ∈ H₁.axioms → H₂ ⊢! φ)
:
H₁ ≤ₛ H₂
theorem
LO.IntProp.Hilbert.weaker_than_of_subset_axiomset
{α : Type u}
{H₁ H₂ : LO.IntProp.Hilbert α}
(hSubset : H₁.axioms ⊆ H₂.axioms := by aesop)
:
H₁ ≤ₛ H₂