Documentation

Foundation.IntProp.Hilbert.Basic

structure LO.IntProp.Hilbert (α : Type u_1) :
Type u_1
Instances For
Instances
    inductive LO.IntProp.Hilbert.Deduction {α : Type u} (H : Hilbert α) :
    Formula αType u
    @[reducible, inline]
    abbrev LO.IntProp.Hilbert.theorems {α : Type u} (H : Hilbert α) :
    Equations
    @[reducible, inline]
    Equations
    instance LO.IntProp.Hilbert.instIncludeLEMCl (α : Type u) :
    (Hilbert.Cl α).IncludeLEM
    instance LO.IntProp.Hilbert.instIncludeEFQCl (α : Type u) :
    (Hilbert.Cl α).IncludeEFQ
    instance LO.IntProp.Hilbert.instIncludeEFQKC (α : Type u) :
    (Hilbert.KC α).IncludeEFQ
    instance LO.IntProp.Hilbert.instIncludeEFQLC (α : Type u) :
    (Hilbert.LC α).IncludeEFQ
    @[reducible, inline]

    WeakMinimal from Ariola (2007)

    Equations
    @[reducible, inline]

    WeakClassical from Ariola (2007)

    Equations
    @[reducible, inline]
    Equations
    theorem LO.IntProp.Hilbert.Deduction.eaxm! {α : Type u} {H : Hilbert α} {φ : Formula α} (h : φ H.axioms) :
    H ⊢! φ
    noncomputable def LO.IntProp.Hilbert.Deduction.rec! {α : Type u} {H : Hilbert α} {motive : (a : Formula α) → H ⊢! aSort u_1} (eaxm : {φ : Formula α} → (a : φ H.axioms) → motive φ ) (mdp : {φ ψ : Formula α} → {hpq : H ⊢! φ ψ} → {hp : H ⊢! φ} → motive (φ ψ) hpqmotive φ hpmotive ψ ) (verum : motive ) (imply₁ : {φ ψ : Formula α} → motive (φ ψ φ) ) (imply₂ : {φ ψ χ : Formula α} → motive ((φ ψ χ) (φ ψ) φ χ) ) (and₁ : {φ ψ : Formula α} → motive (φ ψ φ) ) (and₂ : {φ ψ : Formula α} → motive (φ ψ ψ) ) (and₃ : {φ ψ : Formula α} → motive (φ ψ φ ψ) ) (or₁ : {φ ψ : Formula α} → motive (φ φ ψ) ) (or₂ : {φ ψ : Formula α} → motive (ψ φ ψ) ) (or₃ : {φ ψ χ : Formula α} → motive ((φ χ) (ψ χ) φ ψ χ) ) (neg_equiv : {φ : Formula α} → motive (Axioms.NegEquiv φ) ) {a : Formula α} (t : H ⊢! a) :
    motive a t
    Equations
    • One or more equations did not get rendered due to their size.
    theorem LO.IntProp.Hilbert.weaker_than_of_subset_axiomset' {α : Type u} {H₁ H₂ : Hilbert α} (hMaxm : ∀ {φ : Formula α}, φ H₁.axiomsH₂ ⊢! φ) :
    H₁ ≤ₛ H₂
    theorem LO.IntProp.Hilbert.weaker_than_of_subset_axiomset {α : Type u} {H₁ H₂ : Hilbert α} (hSubset : H₁.axioms H₂.axioms := by aesop) :
    H₁ ≤ₛ H₂